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FOREWORD 

The Graduate School takes pride in publishing Dr. Wadley’s manuscript 
on experimental statistics in entomology. This book is a continuation of 
Dr. Wadley’s many contributions to the Graduate School. He has written 
and taught three correspondence courses in statistics: Statistical Methods 
in Biology and Agriculture (1939), Experimental Design (1945), and Statis¬ 
tics of Biological Assay (1955). Dr. Wadley is still teaching Experimental 
Design and Statistics of Biological Assay. 

Dr. Wadley has worked as an entomologist and biological statistician 
since 1914. He has a Ph.D. in entomology from the University of Minnesota. 
His principal interest and work since 1936 has been in biological statistics. 
He worked for the Bureau of Entomology, U. S. Department of Agricul¬ 
ture, for 28 years, the Department of the Navy for 4 years, and the Depart¬ 
ment of the Army for 9 years. He retired from the Federal government in 
1962. He now serves as a statistical consultant to Fort Detrick (Army) and 
the U. S. Public Health Service. 

This book is an accumulation of applications developed by Dr. Wadley. 
A leader in the field of applied statistical analysis, Dr. Wadley presents his 
material in a comprehensive and concise manner. 

John B. Holden 

Director 
Graduate School 





PREFACE 

The author conceived the idea of this work between 1940 and 1945, 

while working as statistical consultant for the Bureau of Entomology. The 

need of such discussions for those facing statistical questions in experimental 

work, but not well versed in such methods, was apparent. Since then ma¬ 
terial has been accumulated as time could be spared from more regular 

work. The opportunity to draw this work together has come recently, and 

it is submitted with the hope that it will be helpful. 

Many acknowledgments must be made. My teachers, supervisors, and 

colleagues have made the work possible. I must give credit to the Graduate 
School for their encouragement ; especially to Miss Vera Jensen for much 

help and counsel, and Mrs. Kathleen Gilbert Franz for careful work in 

typing. Dr. William Waters, of the Forest Insect Division of the U. S. 

Forest Service, and Dr. Clifford Maloney of the U. S. Public Health Serv¬ 

ice, were very helpful in reviewing the manuscript. Mr. William Everard 

of the U. S. Forest Service gave valuable editorial help. 

F. M. Wadley 
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INTRODUCTION 

This discussion is intended to help entomological workers who have a 

real interest, but little training, in applying statistical methods to research 

problems. As such it is very elementary; mathematicians and entomologists 

advanced in statistical methods will probably be dissatisfied with it. How¬ 

ever, it is the author’s belief that this level of presentation will do the most 

good. It is a general observation that when research workers begin to ana¬ 

lyze their own data, improvement in experiments and results soon follows. 

After trying out analytical methods, references to more advanced methods 

can be utilized, and this discussion will have served its purpose. 

In our text, a survey of problems, and of simple computation methods, 

is followed by a chapter on sampling principles and one on experimental 

design. Last, a collection of practical problems that have actually arisen is 

recorded, with analytical procedures shown in detail. 

In applying statistics to science, we should remember the classification 

of sciences into physical, biological, and social, in decreasing order of exact¬ 

ness. Our biological material shows more variation than that of the physicist 

or chemist. Their standards of exactness are usually not practicable in 

biology. 

Statistical analysis has been developed, from considerations of simple 

probability, into various forms, often quite complex. However, any good 

method has a common-sense basis which can be made clear without much 

mathematical discussion. The term statistics has at least two meanings, 

which has sometimes led to harmful misunderstandings. It is often applied 

to mere tabulation, addition, averaging, etc. Statistical analysis of the type 

needed to interpret experimental results is far different from this clerical 

labor. I like Miss Gertrude Cox’s term “experimental-statistics” and the 

former Civil Service classification “analytical statistics” which clarify the 

situation a little. “Biometrics” is a related term, applied to use of mathemat¬ 

ical methods in biology, whether statistics or pure mathematics. 

We should keep planning of tests to the fore in our study, since it is in 

planning that statistical methods find their fullest application. Past results 

give some basis for plans, and planned experiments are not only easier to 

analyze, but they get more out of the work and expense involved. In study¬ 

ing some old-time experiments in entomology, one is impressed by the 

“lost motion” and confusion as to results caused by want of good planning 

and analysis. In some cases intuitive conclusions were correct, in others 

different workers got conflicting results and arguments followed. Less con- 

1 



2 • Introduction 

fusion and more progress would probably have resulted if good statistical 

practices had been available and had been applied. 

The application of the methods we are discussing to biological experi¬ 

ments will usually point out conclusions that can be seen after analysis to 

be the common-sense ones. Progress is thus assisted, but is steady, slow, 

and unexciting. Occasionally statistical methods will make possible rapid 

progress in a single stroke, but this is not common. 

An example of this sudden rapid progress was published some years ago 

(Holloway and Young, Jour. Econ. Entomol. 36(3): 453-457, 1943). Early 

workers in a certain area had jumped to a conclusion that an orchard scale 

insect of the region was checked by a fungus growing on the scales. The fact 

that scales increased following fungicidal spraj^s strengthened the belief. 

Restrictions on spraying and practices of broadcasting the fungus followed. 

Other facts led to suspicion that the rough spray residue, rather than the 

fungicide, favored the scales. A single well-planned and replicated test 

included: 

1. A fungicidal, residue-producing spray; 

2. A residue spray without fungicide; 

3. A soluble fungicide which did not produce residue; 

4. No spray at all. 

Results showed conclusively that the residue, not the fungicide, produced 

scale buildup. Scale population was not affected much by the presence or 

absence of the fungus, which apparently grew mostly on dead or aged scales. 

Thus expensive practices of long standing were shown to be of little use. 



CHAPTER 1 

Survey of Problems and Methods 

1. Nature and range of problems 

In considering applications of statistical methods to entomological 

problems involving quantitative data, we must ask to what extent general 

methods will apply to our special problems. The answer is that they will 

apply well and be helpful in many places, if we take the nature of our 

data into account. 

The problems of economic entomology are largely those of insect popu¬ 

lations. Two phases of the problems recur constantly; density of insect 

population per unit, and proportion of the population affected by some 

condition. These are problems of enumeration of indivisible units. Problems 

of measurements are also encountered; weather records, spray deposits, 

crop yields, size of individuals, time required for a given process. The 

enumerations, in small samples, do not behave statistically exactly like 

measurements. Classic statistical methods are based on behavior of “con¬ 

tinuous” variables such as measurements. A little modification in procedure 

is sometimes needed with enumeration statistics. Where numbers are large 

or counts are quite similar, standard methods are fairly accurate. Where 

high and low counts are mixed or numbers are small, it sometimes gives 

better results to transform the counts before analysis to some such function 

as the logarithm or square root. 

It should always be remembered that the material we study is only a 

sample, and we study it to find what we can about the whole population 
of interest. Effect of some practice on corn borer population in field plots 

gives an idea of its effect on corn borers of the entire region. Successive 

samples will not agree exactly. Their variation is used to give a key to 

how near they are to the true population mean. 

Statistical methods are finding considerable application in cage or 

laboratory experiments, field population studies, field plot experiments on 

insect control or on populations, and various other experiments such as 

those with livestock insects and insect traps. Considerations of sampling 

and experimental design applying to such studies will be shown in later 

chapters. 

Cage and laboratory tests are usually on percentage of insects killed 

(an enumeration), but are sometimes on insect reactions, physiology, etc. 

3 



4 • Problems and Methods 

The writer (Wadley 1943a)* has set out some considerations in such tests. 

Favorable cage results are commonly tested on a broader scale in the field. 

Replication should be provided in laboratory tests, and if possible a full 

set of tests should be run on each day. 

Field plot studies are common, especially on insect control. They often 

involve cooperation with agronomists, pathologists, or others, and there 

are several measures of results. Effect of practices on insect population is of 

major interest. Evaluating results by crop yield alone runs the risk of 

missing important points, though yields are needed for study. Especially 

superficial is the effort to state benefits of treatment in dollars; such esti¬ 

mates are of little value to future work, and partake more of extension 

than research. Correlation of insect density with crop loss is a subject 

needing more attention than it has received. Insect populations on plots 

are usually estimated by sampling. 

Among methods of data collection, direct counts of insects in their 

habitat are foremost. Insect traps have been used as a sort of unsteady 

index of ups and downs of insect populations, as have sweep-net studies. 

Such indices often given results useful in immediate problems, but rela¬ 

tions to true population density should be established if trap or net studies 

are to have the greatest usefulness in knowledge of populations. Great 

caution should govern utilization of such records, as they vary both from 

true population changes and from variable insect behavior. Morris (1960) 

has made valuable contributions in this field. Efforts have been made to 

reduce insect population to a low point by trapping. Scott and Milam 

(1943) record one, and later studies have been made. The fluid character 

of an insect population mobile enough for trapping makes such control 

very difficult, though it is a very plausible method. Fleming et al (1940) 

note experiments comparing traps. The “capture-recapture” method used 

by students of vertebrates has been applied in entomology in the case of 

tsetse fly populations. Estimates are made by releasing marked individuals, 

trapping, and estimating totals by the proportion of marked flies in the 

catch (Jackson 1940 and earlier papers). Variance of such estimates is 

high. Extent of injury to crops or animals is a measure definitely related to 

insect populations. 

Experiments with insects attacking domestic animals have received 

some attention in studies of insecticides and repellents. Fryer et al (1943) 

have reviewed some methods and described experiments. Extensive 

series of mosquito repellent studies have been described by Travis et al 

(1949) and noted by the writer (Wadley 1946). Plant resistance to insects 

(Painter 1951) and infectivity of insect carriers of plant and animal disease 

are experimental subjects of importance. Peto (1953) gives some mathe- 

* Kefers to Literature cited at the end of the chapter. 
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matical methods for the latter case. Work of recent years in eradication of 

the screwworm is still being studied for broader applications. 

A large variety of important work is carried on to estimate insect popu¬ 

lations over wide areas by sampling. Such studies are usually termed 

surveys. Figures are used to compare with other times or other areas, to 

forecast need for control, or to check effectiveness of control work. In 

some cases, the question is merely whether or not a species is present at 

all; more frequently, the density of population is to be estimated. Both 

objectives are useful, but should not be confused (Wadley 1945a). If 

objectives can be defined, an intensity of sampling sufficient to detect any 

important population can be set up, and work can thus be limited. Surveys 

are not as adequate a basis for decision as experimental studies in improve¬ 

ment of control methods. 

In some other types of problems, only a beginning has been made in 

use of biometrics, although pure mathematics has been applied in some 

cases. These problems include those in old-line life history studies, and 

ecological studies such as population growth curves, temperature-de¬ 

velopment studies, host-parasite relations, life table studies, and biocli- 

matics. 

Studies of life history and habits were characteristic of the older work in 

entomology; numerous individuals were reared under rather restricted 

conditions, and time required for different stages was recorded. We now 

recognize the limitations of such studies, but they are still needed in pre¬ 

liminary stages of certain problems. Records are adaptable to biometric 

study; analysis of past studies would probably show that often more were 

reared than was necessary. 

The subject matter developed under the heading of animal ecology 

(Chapman 1931, Allee 1949, Andrewartha and Birch 1954) is of broader 

application and great importance in attack on many entomological prob¬ 

lems. Both physical factors such as temperature and biotic factors, such as 

association, competition, and population growth, are included. Volterra 

(see appendix to Chapman 1931), has given a theoretical mathematical 

treatment of population growth. DeBach and Smith (1941) developed a 

study of oscillation in host-parasite relations, with a useful review of 

literature. Waters and Henson (1959) and Morris (1960) are among those 

contributing to recent advances. Many other articles have appeared. 

Cook (1929) discussed bioclimatic problems. He stated the principle that 

the study of regional abundance and climate should go side by side with 

that of relation of time changes in abundance and weather. He distin¬ 

guished carefully between economic and “taxonomic” distribution. Bio¬ 

climatic studies are hindered by lack of accurate population records, but in 

some problems precise sampling methods are making records available. 
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In all such studies, biometric methods are needed to measure and account 

for variation, and to test the reliability of estimates evaluations. The 

writer, with associates, has made some such studies (Wadley 1936, Wadley 

and Wolfenbarger 1944). 

Applications of biometrics to insect physiology and taxonomy are so 

far very restricted, although pure mathematics is much used in physiol¬ 

ogy. Insect physiology and behavior are very important in many problems. 

Wigglesworth (1961) and Roeder (1953) have given us two general texts 

with many references. Most work in physiology has so far been on a rather 

narrow basis, emphasizing careful studies under closely controlled condi¬ 

tions. Exposure to more varied conditions is usually necessary before ap¬ 

plication of findings can be made. There is a temptation to try to explain 

biological happenings solely from chemical and physical considerations, 

which may prove a snare. As with ecological studies, application of bio¬ 

metrics is needed. 

Insect behavior is a neglected field of considerable importance, allied to 

physiology. The extreme variability of insect reactions and the anthropo¬ 

centric viewpoint of some older studies have been hindrances. Insects are 

not capable of as complex behavior as are vertebrates. Insects vary greatly 

with conditions and species. Olfactory responses seem more variable than 

optical or tactile reactions. Biometric principles will help in plans and 

interpretation of tests, but experimental difficulties must first be attacked. 

Wellington (1957) has discussed some of these problems. 

Taxonomic problems differ from some others. In setting up groups as 

distinct species, characters are sought which will distinguish them clearly 

without overlapping other species. With similar groups, sampling should 

be widespread, among various lots of each group. If a character is quali¬ 

tative, and determinable by inspection without measurement, and it 

occurs without fail in 100 specimens examined, we can be fairly sure it 

does not fail in over 5 percent of the whole population. (This is based on 

the “Poisson” series to be mentioned later.) If a quantitative character 

or measurement is used, 20 or 30 well-distributed individuals will give 

fairly good estimates of the mean, and standard deviation (discussed later). 

In the whole population, practically all individual measurements will fall 

within 3 standard deviations of the mean. 

Where two or more characters are measured, the best combination can be 

found b}^ an application of multiple regression methods to secure the so- 

called “discriminant function” (Fisher 1946 and later editions). An example 

will be presented later. 

In taxonomy in general, we wish to be able to separate all individuals 

of one group from those of another, without overlapping; while in many 

biometric studies it is sufficient merely to show that group measure means 
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are different. Simple applications of biometric methods in taxonomy are 

scattered through the literature. A few examples are in articles by Mickel 

(1928), Emerson (1935), Forbes (1953), Buchanan (1947). The last-named 

article does not discuss statistical methods, but they were used in defining 

the ideas developed. At present new methods involving cytology, bio¬ 

chemistry, and other techniques are being used in taxonomy, and revolu¬ 

tionary changes are developing. Articles by White (1957) and Micks et al 

(1966) will show this trend. 

2. Methods of computation. Distributions 

Methods of computation are to be presented for very simple problems 

illustrating the principal techniques of analysis. It is hoped that such 

illustrations will lead to wider use of the many excellent textbooks now 

available, some of which are cited at the end of this chapter. The examples 

will seem very elementary to those already analyzing their own data, and 

still more so to statisticians. They may be helpful to those with no ex¬ 

perience in analysis, and to those with mathematical experience who do 

not know the simplest and most efficient statistical methods. 

The idea of distribution of a variable quantity is basic in statistical 

analysis. In its simplest form it is only a grouping to show the order present 

in apparently jumbled observations. For example, 53 individuals of an 

insect species were reared at a certain temperature. The clays required 

for development are listed as 10, 10, 10, 11, 12, 12, 12, 9, 10, etc. When 

arranged in a frequency table we have: 

Days No. of insects 

9 1 

10 10 

11 19 

12 21 

13 1 

14 1 

Note that records are in whole days, since examinations were made only 

once a day. This “discontinuity” does not prevent the calculation of 

useful measures, especially where numbers are ample. 

From such a table may be calculated measures of magnitude (the arith¬ 

metic mean is usually the best), and measures of spread such as the range 

and the standard deviation. Such a distribution may readily be expressed 

graphically. If we have enough information, we can describe the distri¬ 

bution mathematically and fit a curve to it. This has been done with 

several well-known distributions. A graph (fig. 1) will further illustrate 

the idea. 
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8 • Problems and Methods 

Figure 1. Histogram of heights of 200 corn plants. Ten means of 20 plants each are 

indicated in heavy marking. 
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Our statistical tests in most cases rest on knowing something about the 

possible distribution of results. For example, with a difference of two means 

(say mean yields of two crop varieties) we can calculate how much ap¬ 

parent difference might show up, just from chance variation, if there 

were no real difference. If the actual difference found exceeds this possible 

difference, we say the difference mentioned is real or “significant.” To 

estimate the possible difference mentioned, we need some idea of the varia¬ 

tion, gained by having several repetitions of the experiment, and of the 

underlying mathematical distribution of differences in repeated tests of the 

same thing. 

A well-known distribution long studied by mathematicians is the “nor¬ 

mal” distribution. It is symmetrical and is determined mathematically by 

the mean and standard deviation. It is fully described in texts to be cited; 

tables have been made of areas under the curve corresponding to lengths 

measured along the base. These tables can be used in tests. Some individual 

values (especially measurements) tend to fall in this distribution when 

successive determinations are made; the “days required” above would 

probably do so. Means of a series of values, from repeated random samples, 

are almost sure to be normal in distribution; as are differences of two 

means. Many standard statistical tests are based on the normal distribution. 

A “statistic” in the truest sense is an estimate from a sample of one of the 

basic constants of a population, such as its mean or standard deviation. 

When the sample is small, such estimates may not be very good. A modifi¬ 

cation of the normal distribution, called the “t” distribution, is used for 

testing in such cases. It approaches the normal when numbers are large. 

Practically all our tests involving the standard error will be made in the t 

distribution. The tests presuppose that individuals were randomly sampled 

from the population (see Chapter 2), and the individuals were randomly 

distributed in space or time. 

The binomial distribution is applicable to numbers or proportions of 

individuals having or lacking a given characteristic. It can be defined by 

expansion of a binomial, (p + q)n, where p is the proportion of successes, 

q is (1 — p), and n is the number of cases. A simple example is given by 

the distribution of heads and tails in shaking up 3 coins a number of 

times. Here p is % or 0.5, q is 0.5 and n is 3. The binomial is (0.5 + 0.5)3. 

Expanding, we have p3 + 3p2g + 3q2p + q3, which with p and q each 0.5 

becomes 0.125 + 0.375 + 0.375 + 0.125. Accordingly, the expected results 

in a number of shakes is: 3 heads of the time, 2 heads and a tail 

of the time, a head and 2 tails % of the shakes; 3 tails in of the trials. 

The distribution is obviously not continuous or uninterrupted like the nor¬ 

mal, but has values at only a few points. With large numbers it be¬ 

comes like the normal, but with small numbers and p or q near 1.0, it is 
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quite lopsided or “skew.” It is the expected distribution for successive 

counts of percentage mortality and similar statistics, and is hence im¬ 

portant to biologists. 

Another “discontinuous” distribution, related to the binomial with p 

small, is the Poisson series of numbers per unit. The Poisson occurs when 

an organism has an equal chance of being in any of the units; and units 

have an equal chance of receiving an organism, unchanged by the presence 

or absence of organisms already in the unit. If m is the mean number per 

unit, and X is a series of small whole numbers (0, 1, 2, etc.), the Poisson 

distribution of expected proportion of zeros, ones, etc., is given by 

e~mmx/X\, which is equal to mx/(em)(Xl). Here e is a mathematician’s 

constant (about 2.72) and XI is x factorial. Fitting will be shown in a 

later part of this work. The Poisson is the expected distribution for num¬ 

bers of organisms per unit, such as insects per square foot or per plant. 

It is found, however, only where the organisms are random in distribution. 

In most natural populations a more complex modification such as the 

“negative binomial” will be found to fit better than the Poisson. Examples 

of this will also be shown later. Waters and Henson (1959) and the writer 

(Wadley 1950) have discussed applications of some of these distributions. 

3. Methods of computation. Simple variation 

The Fisher-Snedecor notation will be used in showing some examples; 

it is simpler than others, and especially easy for typing. 

First will be shown a certain measurement on a series of individuals of 

two invertebrate species. 

Sp. A: 7.6, 7.7, 7.8, 8.4, 9.3, 7.6, 7.0, 8.7, 7.0, 7.6 

Sp. B: 9.4, 10.5, 10.0, 10.2, 10.1, 9.4, 9.6, 11.2 

Taking first Species A, we denote the original measurement by X, the 

mean by x. To get the variance and its square root, the standard deviation 

s, we need the sum of squares of deviations from the mean (table 1). Each 

deviation is X — x; or conveniently, simply small x. The number of cases 

is denoted by n; here, n = 10. $( ) indicates summation. 

We find x = S(X)/n = 78.7/10 = 7.87. The calculation of sum of 

squares of deviations follows as shown. Then the standard deviation is 

calculated as \/S(X — x)2/(n — 1), which is \/4.7810/9 = \/0.5312 = 

about 0.73. 

The sum of squares of deviations can also be calculated as &(A"2) — 

DS(X)]2/n, which is more convenient with a machine. The term [S(X)]2/n 

is sometimes called the “correction factor.” Here this calculation is 624.15 

— (78.7)2/10 = 624.15 — 619.37 = 4.78, using only two decimal places. 
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Table 1. Calculation of sum of squares of deviations 

V X - x (V - *)2 X2 

7.6 -0.27 0.0729 57.76 

7.7 -0.17 0.0289 59.29 

7.8 -0.07 0.0049 60.84 

8.4 +0.53 0.2809 70.56 

9.3 + 1.43 2.0449 86.49 

7.6 -0.27 0.0729 57.76 

7.0 -0.87 0.7569 49.00 
8.7 +0.83 0.6889 75.69 
7.0 -0.87 0.7569 49.00 

7.6 -0.27 0.0729 57.76 

78.7 0.00 4.7810 624.15 

Table 2. Sum of squares calculated using frequency 

X V2 /(frequency) fX fX 2 

9 81 1 9 81 

10 100 10 100 1000 
11 121 19 209 2299 
12 144 21 252 3024 

13 169 1 13 169 
14 196 1 14 196 

53 597 6769 

The sum of squares of deviations is very important in more advanced 
statistical work. Where several items have the same value, this fact may 
be utilized in calculation. The 53 lengths of time required for development, 
previously cited, may be treated as in table 2. 

£(x2) = S(fX2) - [S(fX)]2/S({) 

= 6769 - [(597)2/53] = 44.3 

The variance (V), the square of the standard deviation, is also much 
used in more advanced work. In table 1 it is 0.5312, calculated on the way 
to the standard deviation. The latter statistic is a steppingstone in the 
present problem of comparing means of Species A and B, but has some 
importance of its own. Where individual items follow a “normal” distri¬ 
bution, about two-thirds of the items are within one standard deviation 
of the mean (as, 7.87 =b 0.73); about 95% within 2s; practically all within 
3s. Individual variation is often important, as in taxonomic problems 
(Chapter 4, example 32). 
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If numerous samples of 10 were taken and a series of means were se¬ 

cured, they would show more limited variation than individual values. 

While individual items may not follow the normal distribution, means 

are almost sure to do so. The standard deviation of means, s£, can be esti¬ 

mated as s/y/n. In table 1, this is 0.73/\/l0 or 0.23. Thus estimated, 
Si is usualty called the standard error. Following up the characteristics 

of the normal distribution, when cases used to estimate s are numerous, 

two-thirds of the means of samples of 10 will be within one s£ of the true 

mean; 95% will be within 2s*. With our limited numbers (n — 1 = 9) the 

multiplier from the “t” distribution is 2.26 instead of 2; 2.26 X 0.23 

gives 0.52. 

This means that we are fairly sure that our mean, 7.87, is within 0.52 of 

the true mean; thus, that the true mean is between 7.35 and 8.39. There 

are the so-called fiducial or confidence limits. The calculation may use 

variances: Vx = V/n, s£ = y/Vx. 
The comparison of the two series is a further development. The 8 indi¬ 

viduals of Species B are used in calculations similar to those above, with 

results as follows: S(X) = 80.4; x = 10.05; $(V2) = 810.62; S(x2) = 

810.62 — (80.4)2/8 = 810.62 — 808.02 = 2.60. Variance and standard 

error are quickly calculated. The difference of 2 independent means tends 

to be normally distributed with standard error (sd) estimated as 

y/Sxi + Sx2- In the complete formula there is an allowance for correlation 

not important here. Textbooks cited later will show this. In problems such 

as this the best way of combining the variance is to calculate an average 

variance (“pooled”) by adding the sums of squares of deviations and the 

quantities (n — 1). The latter quantities are known as the number of 

“degrees of freedom,” a term better defined in textbooks, and to be re¬ 

ferred to later in more detail. 

The combination is carried out as in table 3. The variance of the differ¬ 

ence is estimated as F(l/nl + l/n2), or 0.4612 (Yio + M) = 0.4612 X 

0.225 = 0.1038. The standard error of the difference Sd is \/0.1038 = 

about 0.32. The mean difference is 10.05 — 7.87, or 2.18. The difference is 

about 7 times its standard error. The total of degrees of freedom, which 

fixes the reliability of the test, is 16 (table 3). Consulting the “t” table 

Table 3. Pooling variance 

Species 5*2 Degrees of 
freedom Variance 

A 4.78 9 — 

B 2.60 7 — 

7.38 16 7.38/16 = 0.4612 
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Table 4. Yield of two varieties in 5 years 

Variety 
Year 

1st 2nd 3rd 4th 5th 

A 40 47 34 18 27 

B 31 46 31 21 16 

A-B +9 + 1 +3 -3 + 11 

at the end of this Chapter (table 9) we find the “5% point” for t with 16 

degrees of freedom is 2.12; the 1% point, 2.92. For 16 d.f. (degrees of 

freedom) with no real difference, cl/sd will reach 2.12 only one time in 20 

(5% point), and 2.92 only 1 time in 100. In our case d/sd — 2.18/0.32, 

or 6.81. Hence we decide that the mean difference 2.18 could hardly be¬ 

long to a population of differences with mean 0 and sd 0.32. It must be real. 

If these samples of 10 and 8 are representative of their populations, the 

two species differ in this measurement. We would decide the difference to 

be real if computed t(d/sd) reached 2.12 or higher. 

Note that this does not mean that odds are more than 19 to 1 in favor of 

the difference being real. Rather, the odds are less than 1 in 20 favoring 

getting such a large sample difference where there is no real difference. 

In some cases items in two series are appropriately “paired” and a 

simpler procedure will work. A classic example is the yield of two varieties 

of wheat, grown side by side under the same conditions during 5 years 

(table 4). Pairing will eliminate the large differences between years, and 

will make sd much smaller. Here the differences can be treated as a simple 

series: x, S(x2), V, Vx, and can be calculated in the “A-B” row. The 

“t” computed is x/s^ and it may be compared with the tabular t for 4 

d.f., to see if x is significantly different from zero. 

S(X) = 9+1 + 3- 3+11 = 21; £ = 21/5 = 4.2 

S(X2) = 81 + 1 + 9 + 9 + 121 = 221; S(x2) = 221 - [(21)2/5] = 132.8 

V = 132.8/4 = 33.2; Vx = 33.2/5 = 6.64; - \/0M = about 2.6 

Then t computed = 4.2/2.6 or about 1.6. With only 4 d.f., the 5 % point is 

about 2.8. We conclude that we are not sure the varieties really differ, 

because of the large variation and small numbers. A longer series might or 

might not reveal a difference; on the other hand, the result we see might 

easily come about with no real difference. 

Observe that if the procedure of table 3 were used, the error estimate 

would be higher because of the large variation between years. Subtraction 

of a correlation allowance (previously mentioned) would reconcile the 
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difference. Note also that pairing gave a possibility of better analysis, 

and that it would not have been possible with data of table 1. In that 

case the items were unordered without any appropriate order in their 

groups. Whether or not items are ordered is a very important factor in 

analysis. To introduce pairing or cross-classification where it does not 

belong may give weird results; to neglect it where it is appropriate sacri¬ 

fices accuracy in analysis. 

4- Methods of computation. Compound variation and analysis of variance 

Variation is seldom as simple as in the examples above. We generally 

have more than one source of variation, and usually have several classes 

to compare instead of twro. Statisticians have gradually perfected a tech¬ 

nique which can be used if desired for simple problems and can be extended 

to more complex cases. The history of the struggle with the problem of 

compound variation and of the development of solutions, must be passed 

over here. The most convenient short-cut techniques will be illustrated 

with the data already used, and an indication given of possibility of ex¬ 
tension. 

For the measurement on Species A and B already discussed, the total 

sum of squares of deviations is first computed by throwing the two series 

together. The computation is: [(7.6)2 + (7.7)2 + • • • + (11.2)2] — (78.7 + 

80.4)2/18, or 1434.77 — 1406.27 = 28.50. That part of this sum caused 

by between-species difference is estimated as (78.7)2/10 + (80.4)2/8 — 

1406.27, or 619.37 + 808.02 — 1406.27, wdiich is 21.12. The sum of squares 

between items writhin classes could be computed in each class (as has in 

fact already been done; see table 3). However, since the sums of squares 

are additive, the within-class sum can be conveniently secured by sub¬ 

traction. Thus we have 28.50 — 21.12 which gives 7.38 (as in table 3). 

The analysis may be summarized (table 5). 

The appropriate test here is the “F” test or variance-ratio test. Computed 

F is 21.12/0.46 or about 46.0. The distribution of F (wrhere no real differ¬ 

ence exists) is a different distribution for each combination of degrees of 

freedom. An abridged table (table 10) is given at the end of this chapter. 

Consulting table 10, we find, for 1 d.f. for greater mean square, 16 d.f. for 

Table 5. Summary of analysis of variance 

Source of variation Degrees of 
freedom 

Sum of squares 
Mean square 
of variance 

Total 17 28.50 — 

Between species 1 21.12 21.12 

Within species 16 7.38 0.46 
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lesser, that the 5% point is only about 4.5. If there is no real difference, 

F will go as high as 4.5, only 1 time in 20. Our value, 46.0, is far beyond 

this; we conclude as before that the difference is real. 

From the calculations above, we can see that this procedure could be 

carried out just as handily with 3, 5, or 10 species, as with 2. The degrees 

of freedom between classes would be 2 for 3 groups, 4 for 5, etc. Those 

within classes could be summed for the various groups as is done above. 

The within-class or within-species mean square can be used to calculate 

a standard error of the difference between any two group means. This 

calculation for the problem above has already been done following table 3. 

Suppose there were 3 groups, each of 10 individuals; with means 10.05, 

7.87, and 8.10, and variance within groups of 0.46. The standard error 

of any one of the 3 differences is estimated as \/0.46(Ko + Mo) or \/0.092 

or about 0.30. This would show that the second and third mean did not 

differ from each other significantly, but that both differed from the first 

mean. The “F” test would merely show that a real difference between 

groups existed somewhere. The use of the standard error and “t” test as 

above, as a supplementary procedure, helps to pick out the cause of signifi¬ 

cance. In such a case the degrees of freedom within classes would number 

27, for “t” or “F” tests. 

Several assumptions underlie such analysis. It is apparent that we 

suppose that class means may differ, but internal class variances are 

similar and may be put together. To violate this assumption too far may 

lead to contradictory results, although the procedure is rather flexible. 

The similarity of variances is rather more important in the calculation 

and use of a standard error than in the “V” test. The items are supposed 

to be somewhere near normal in distribution within each class, and our 

enumeration statistics sometimes give trouble in this respect. In some 

cases, a function of the count numbers can be used in analysis (“trans¬ 

formation”) which gets away from the trouble. These cases are discussed 

in another section. The need of transformation is really not pressing except 

in extreme cases; percentage counts near 0 or 100%, and highly variable 

population counts such as insect trap records, are examples. Additivity and 

independence of variances, as well as independence of means, is important. 

Another caution must be observed in making “t” tests from the analysis 

of variance. Some differences may pass the 5 % point merely because of the 

number of possible differences. With 10 means, there are 45 differences, 

and a couple of the highest will be expected to pass the 5 % point even if 

no real difference exists. Hence, “t” tests should not be carried out unless 

“F” is significant. Special procedures for “t” tests in analysis of variance, 

allowing for numbers of classes, have been worked out. Snedecor (1956, 

Sec. 10.6) records one (see Chapter 4, example 33). 
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Table 6. Summary, analysis of variance of yields 

Source of variation Degrees of freedom Sum of squares Mean square 

Total 9 1081 

Years 4 970 242.5 
Varieties 1 44 44.0 
Interaction: year X variety 4 67 16.8 

A more complex and highly important case is that in which data are 

cross-classified. The data used in table 4 give a simple example. The sum 

of all 10 yields is 311; the 2 variety sums are 166, 145; the 5 yearly sums 

are 71, 93, 65, 39, 43. The total sum of squares of deviations is: (40)2 + 

(47)2 + ... _j_ (16)2 - (311)2/10, which is 10,753 - 9672 = 1081 (table 6). 

The sum of squares between varieties is [(166)2 + (145)2]/5 — (311)2/10, 

or 44. The sum of squares between years is [(71)2 + • • • + (43)2]/2 — 9672, 

or 970. The remainder sum, 1081 — 44 — 970 = 67, the part associated 

with differential effect or “interaction” of varieties and years. 

In this case, the interaction variance functions as error variance, and F 

for varieties is calculated as 44.0/16.8 = 2.62, not significant with 1 and 4 

d.f. (see table 10). This confirms the “t” test of table 4, but the method of 

table 6 can easily be extended to 3 or more varieties. 

As before, a standard error of differences can be calculated from the error 

variance, as y/16.8 (3ds + yQ = y/6.72 = about 2.6, just as with table 4. 

Due to the manner of calculation, the “Y X V” variance is just half the 

within-class variance of table 4, and divisors equalize the variances. 

In carrying out an analysis of variance, careful attention must be paid to 

whether or not there is “ordering” within classes, making cross-classifica¬ 

tion possible. In unordered classifications, the division of sum of squares 

is merely into “between” and “within.” In ordered groups, two sources 

of variation and their interaction can be separated. Much more complex 

classifications than those shown can be analyzed. Where they are cross- 

classified 3 or more ways, special tables of subtotals can be arranged, and 

sums of squares can be separated as already shown. In some complex 

analyses, some classifications are ordered and some unordered (Cassil, 

Wadley, and Dean 1943). The textbooks cited, and examples to be shown 

in a later chapter, will indicate methods for more complex cases. 

Another important question in analysis of variance is, what is the error 

variance expressing random variation? In complex analyses, we some¬ 

times have two or more variances furnishing error for different questions 

(as in “split-plot” experiments). A variance from experimental treatment 

may be subdivided; we may have variety, fertilizer, and variety X fertil¬ 

izer. These “treatment” interactions are computed just as is the interaction 
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in table 6, but do not function as error. The interaction of table 6 is an 

interaction between controlled (variety) variation, and uncontrolled (year) 

variation, and thus has an element of random error. The interaction of 

variety and fertilizer does not. 

As indicated after table 3, analyses will show if there are differences in 

the figures available; conclusions must rest on what the figures represent. 

To draw conclusions about the populations, we must know the limited 

figures we have to be good samples of these populations. 

5. Methods of computation. Correlation or association of variables 

Often we have two varying factors occurring in each individual case, in 

such a way that their relation can be studied. An intuitive method of 

studying such a relation is that of grouping. For example, taking the July 

rainfall and the average corn yield in a given locality over a series of years, 

we can take all years with 3.1 to 4.0 inches of July rain, take the average 

yield for these years, and compare it with the average yield for years with 

4.1 to 5.0 inches, 2.1 to 3.0 inches, etc. A second intuitive method is plotting 

both variables against time or order of occurrence, to see if ups and downs 

coincide. 

A more fruitful approach is a graphic one such as portrayed in figure 2. 

The trend of association shows up in a way leading easily to further study. 

It is a short step to represent the trend by a line or curve, which may be 

concisely described by an equation. Regression means the change in one 

variable associated with the change in another, while correlation in the 

narrow sense is a measure of the closeness of the relation. 

In figure 2A, population density per unit area of an insect pest is plotted 

on one axis, percentage of parasitism by its insect enemies on the other. 

The figures are shown in the first two columns of table 7. When the axes 

are marked off in convenient intervals, we take the first case (density 24 %, 

parasitism 24%) and find place 24 units to the right of the zero point, 

24 units above. At this location, we place a dot. The next dot will be 21 

units over, 20 up. When all are placed, the dots give a picture of the rela¬ 

tion. 

It is a handy convention to place the variable we regard as causal (“in¬ 

dependent”) on the horizontal axis, the one showing effect (“dependent”) 

on the vertical axis, and to call them X and Y respectively. Sometimes, 

of course we find variables that do not qualify as dependent, but are inter¬ 

changeable, such as length and fineness in cotton fiber. Even here in the 

mathematical solution it is often necessary to treat one variable as de¬ 

pendent. With interchangeable variables we can have two regressions, 

Y on X and X on Y. 
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A. INSECT DENSITY AND 

PERCENTAGE PARASITIZED 

B. INSECT INFESTATION 
AND CROP YIELD 

C. CONCENTRATION OF POISON 

AND TIME TO DEATH 

INFESTATION, PERCENT CONCENTRATION 

Figure 2, Preliminary plotting in correlation studies 
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Table 7. Insect density and parasitism 

Location Density (% of 
infestation) (X) % parasitism (7) X2 XY 72 

1 24 24 576 576 576 

2 21 20 441 420 400 

3 31 30 961 930 900 

4 22 20 484 440 400 

5 33 29 1089 957 841 

6 25 24 625 600 576 

7 22 15 484 330 225 

8 21 20 441 420 400 

9 21 19 441 399 361 

10 28 22 784 616 484 

Total 248 223 6326 5688 5163 

In figure 2A the trend is plainly upward and about straight. In figure 2B 

data that have no trend are shown; in 2C a trend is evident, but it is curved 

and downward (negative). Preliminary plotting is the first important step 

in a two-variable regression problem. It will show us if there is a relation; 

if it is close or loose, positive or negative, straight or curved. It quickly 

shows the general relation and makes more exact study easier to plan. 

In a number of problems a straight line or linear relation is adapted, or is 

close enough to the fact to be useful. Lines or curves may be fitted by eye 

or in several mathematical ways. The preferred line or curve is one which 

will reduce to the lowest possible point the sum of squares of deviations of 

actual cases from the line. This is the “least square” principle. We may 

try it with data of table 7. Here we need the sums of squares of deviations 

of both X and Y from their means, calculated as in previous examples. 

We also need the sums of the products, $[(X — x) (Y — y)], or S(xy), 
calculated with correction factor, [$(X)] [S(Y)]/n. The calculations are 

illustrated in table 7 and below. 

Any straight line can be drawn if we have (1) its slope, (2) its position. 

The slope is given by the “regression coefficient” (usually called 6), which 

is the average change in Y for one unit change in X. The position is de¬ 

termined by the fact that the least square line will pass through the means, 

or the x, y point. The least square value for b is S(xy)/S(x2). When all values 

have equal weight, as is true in simpler cases, the regression equation is 

Y — y = b(X — x), but it can be put into the convenient form Y = 
a + bX, defining a as y — bx. 

S(x2) = 6326 - (248)2/10 = 6326 - 6150 = 176 

S(y2) = 5163 - (223)710 = 5163 - 4973 = 190 

S(xy) = 5688 - (248 X 223)/10 = 5688 - 5530 = +158 
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Note that the sums of squares of deviations cannot ever be negative, but 

the sum of products of deviations could be negative; hence the latter is 

shown with sign. 

Then b = S(xy)/S(x2) = +158/176 = +0.898; Y = a + bX; a = y - 

bx = 22.30 - (0.898 X 24.8) = +0.03 and Y = +0.03 + 0.898X. 

Having the regression equation, expected values of Y corresponding 

to any of X in the range 21-33 can be calculated. (The calculation should 

not be carried far beyond the actual range under study.) For X = 21, 

the expected Y is +0.03 + (0.898 X 21) or 18.89; for X = 30, it is 26.97. 

Marking in these two values in figure 2A, the line can be drawn through 

them, among the dots for actual cases. 

The deviations of any Y values from the calculated one, can readily be 

taken; for example, for A" = 21, F — (Y expected) is 20 — 18.89. However, 

the sum of squares of deviations from the line can be secured by a short¬ 

cut calculation, S(y2) — [*8+y)]2/*S(+). The first term is of course the total 

sum of squares. The second is the part accounted for by the relation. If 

all 10 expected values were calculated for Y and the sum of squares of 

deviations taken, it would be equal to [S(xy)]2/S(x2). The difference in 

the terms is the sum of squares of deviations from the line. It is the same 

as would be calculated by squaring and summing the 10 deviations from 

the line. Thus the sum of squares is divided into two parts; one explained 

by the relation, the other is the divergence from the relation. 

The sum of squares of deviations from the line is here calculated as 

190 — (158)2/176 which is 190 — 142 or 48. Allowing for regression reduces 

variation in Y from 190 to 48. A standard deviation can be calculated 

around the line instead of from the mean of Y. It is the so-called standard 

error of estimate, syx . The degrees of freedom are here n — 2, because 

both mean and regression coefficient enter into the estimation. The value 

of syx in this case is \/48/8 = \/6 = about 2.45. 

The correlation coefficient “r” is estimated as S(xy) /-\/S{x2) -S(y2), or it 

may be calculated from the relation: r2 = proportion of variation accounted 

for, or 142/190. By either equation r is about +0.865. A perfect correlation 

would be 1.0; no correlation at all, zero. If the relation is negative (down¬ 

ward slope); S(xy), b, and r will come out with minus signs. Thus r measures 

closeness of the relation on a standard scale, from —1.0 to +1.0, while b 

measures the relation in terms of the dependent variable. The r2 is some¬ 

times called the coefficient of determination. 

Correlation coefficients should not be calculated where X is controlled 

or put in artificially. An example might be several selected concentrations 

of a poison used to bring about mortality. Regression procedure, however, 

may be used in such cases. 

The standard error of b is estimated as syx/yjS(x2), here 2.45/v l76 

or about 0.185. In comparing b with zero, “t” is 0.898/0.185 or nearly 5. 
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This is well past the 1 % point for 8 degrees of freedom, so that regression 

is undoubtedly real. 

Significance of r is harder to test, and some old formulas given are 

incorrect, but the textbooks cited should make the test clear. Snedecor 

has a table of significance for r’s of different numbers of degrees of freedom. 

At any rate, if b is significant, r is sure to be. Using standard errors of b 
and y, the whole regression may be evaluated as to error. This is also 

explained in textbooks cited. 

Thus is explained procedure for the simplest case of regression. Often 

two or more independent variables may be involved. One might wish to 

investigate the influence of both July rainfall and July temperature on 

corn yield over a series of years. This situation is hard to represent graphi¬ 

cally, but equations are not difficult if straight-line relations can be assumed. 

For two independent variables, Ah and X2, and dependent variable Y, 

the six sums and products of deviations are calculated. The equation is: 

Y — a + biXi + b2X2. The b’s are secured from the equations: 

S(xi2)bi + S(xix2)b2 = S(xiy) 

S(xix2)bi + S(x22b2) = S(x2y) 

The numerical sums and products of deviations are written in, and solu¬ 

tion gives the b’s. More complex problems follow the same logic. This is 

multiple linear regression. 

It is very frequent in biology to find curved relations. Curves may be 

fitted in numerous wa}rs. Two ways of using the precise methods above 

occur. First, one or both variables may be transformed to some function 

which gives a linear relation. Often the use of logarithms will accomplish 

this. The straight line may be fitted as above to the transformed function, 

and calculated values if retransformed to original units will give the fitted 

curve. In figure 2C, a fairly straight line is secured if reciprocals of time 

to death are plotted against logs of concentration. If only the independent 

variable is changed, the estimate is a least square one. However, if the 

dependent variable is changed, the estimate of the transformed variable 

is least square but the estimate of the untransformed one is not exactly 

least square. 

The second method of handling curves is to take some power or powers 

of X as additional independent variables, and use multiple regression as 

above. For example, X may be called “Xi” and X2 treated as “X2”. This 

gives a least square estimate. The equation in such a case would be Y = a + 

biXi + b2X2, and it will yield a curve. 

In some cases multiple and curvilinear regression techniques are com¬ 

bined. 
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6. Methods of computation. Chi-square 

The statistic called chi-square (often written x2) is essentially a ratio of 

an actual variance to a theoretical expected variance. Its form is that of 

the actual sum of squares of deviations, divided by the expected variance. 

If there is no real difference between the two variances, the average value 

of the quotient is of course the number of degrees of freedom. If the actual 

variance is greater, the ratio is compared with the distribution table of the 

chi-square for the given number of degrees of freedom. If computed chi- 

square passes the 5 % point, it is judged to indicate a real difference. 

The distribution is a special case of the “F” distribution (table 10). 

In the bottom line of the table, for n d.f. and go (infinite) d.f., if the F 

is multiplied by n it gives the chi-square for n d.f. 

Chi-square can thus be used where we have an idea of expected variance 

to compare. All its various uses are of this nature. In most of our common 

chi-square tests, the actual numbers of individuals are of great importance; 

mere percentages cannot be used. It is less widely useful than analysis of 

variance; the theoretical variance is a minimum one, and where numbers 

are large, the chi-square often shows small unimportant differences to be 

significant. The actual computed variance derived in analysis of variance 

is usually more realistic. 

The binomial and Poisson series already referred to have expected 

variances; pq/n for the binomial, where p is the percentage or proportion 

and q is 100 — p or 1 — p. The expected variance is simply the mean (x) 

for the Poisson. If we have a series of percentage counts from a population, 

each based on the same number, their sum of squares of deviations may 

be divided by the theoretical variance of the binomial to secure chi- 

square. Significance will show that the counts vary too much for the 

binomial; they are not homogeneous, and other causes than randomness 

are causing difference. The same sort of test based on the Poisson, may be 

applied to population counts of units of the same size. Examples will be 

shown later. 

The most common use is an approximate one, the test of frequency dis¬ 

tributions. The expected variance of numbers in each class (Poisson) is 

measured approximately by the numbers themselves. If O is the observed 

(actual) number in a class, C the calculated (expected) number by some 

theory, the contribution to chi-square is (O — C)2/C. If these ratios are 

summed for each of a number of classes, the sum is chi-square for that 

problem. (Separate estimates of chi-square with their d.f.’s may be added 

and tested; the additive property is of value.) The smaller classes are 

usually combined to provide at least 5 expected per class, though smaller 

numbers are sometimes used. 
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Table 8. Spray residue on cabbage, chi-square test of normality 

Range, residue per head 
Number 

observed (O) 

Number calculated 
on normal 
theory(C) 

(O - C)VC 

0.000-0.149 8 8.4 0.02 

0.150-0.199 10 9.7 0.01 

0.200-0.249 14 11.8 0.41 

0.250-0.299 7 9.7 0.75 

0.300-0.449 9 8.4 0.04 

1.23 

The number of degrees of freedom is the final number of classes, minus 

the number of ways in which expected and actual must agree. 

As an easy example, 48 heads of cabbage were examined for spray residue, 

and a normal distribution fitted to the results (table 8). The classes were 

at intervals of 0.05 units, but it was necessary to lump some at the ends. 

Chi-square is 1.23. There are 5 classes after lumping. Expected and actual 

must agree in mean, standard deviation, and total number. This leaves 

2 d.f. The 5% point (table 10) is 5.98, using 2 X F for 2 and d.f. Chi- 

square is nowhere near significance; as far as we can tell from the limited 

sample, the distribution accords with the normal. 

In the enumeration statistics so common in entomology, we have an 

idea of theoretical minimum variance (Poisson), and chi-square tests may 

be made. Some evidence may be secured as to whether two or more groups 

are really different. If their actual variance exceeds the theoretical, they 

may show significance by chi-square even if not really different. But if 

they do not differ significantly by chi-square, they will not differ by any 

broader test. Hence a quick application of chi-square, may sometimes 

save later work. Snedecor (1956) gives a number of formulas and examples 

of various uses of chi-square. Dosage-mortality procedures use chi-square. 

The short-cut formulas sometimes disguise the basic comparisons of 

variance; the beginner should pattern his calculations carefully after the 

published examples. 

7. Methods of computation. Covariance analysis 

This subject cannot be more than mentioned here. It is discussed in 

detail in texts by Snedecor, Goulden, and Fisher (see references), and exam¬ 

ples will be shown in a later section. The subdivision of sums of squares 

in analysis of variance has been shown. Sums of products of deviations 

can be subdivided in a way exactly parallel to that used for sums of squares. 

In some experiments, some independent variable not included in the 
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experimental plan (such as moisture content or pH) may be measured 

in each unit. We may then secure two sums of squares and one sum of 

products of deviations of dependent and independent variables. These 

sums may be subdivided according to the outline of the experiment. 

Correlation and regression may be calculated for total, for between classes, 

within classes, and even more complex subdivisions. Differences between 

classes may be evaluated after allowing for known regression effect, and 

results may thus be increased in value. 

Covariance analysis may be seen to combine methods of analysis of 

variance and regression. It sounds complex, but after once starting analysis 

with a good guide such as those mentioned, no great difficulty should be 

found. 

This is true of all the techniques mentioned. A start at calculation, with 

material in which the student is interested, will often lead to surprising- 

progress in understanding. The discussion is closed with a recommendation 

to the student to “break the ice” by following out calculations such as 

above and in chapter 4, then trying the methods on other and similar 

problems. 

A paragraph may be added on “non-parametric” tests, such as compari¬ 

sons of ranking or signs. These are treated by Steel and Torrie (1960; see 

references) and many other writers. Such tests are labor saving in analysis, 

but are often less efficient in use of data than those methods described 

above. 

8. Special problems in biology. Transformations 

It has already been noted that statistics of biological problems are 

largely enumerations, which do not fall in a normal distribution unless 

numbers are large. The expected distribution for percentage counts is the 

binomial, with variance pq/n; for population counts it is the Poisson with 

variance equal to the mean. The variance in such cases is correlated with 

the mean; contrary to the supposition in analysis of variance that intra¬ 

class variances are similar and may be pooled. In natural populations, 

distributions are more likely to resemble the “negative binomial,” with 

somewhat higher variance, but still with correlation of mean and variance. 

To meet this situation, and allow analysis of variance free from worry 

about correlation, several statisticians have worked out transformations. 

A transformation is a function of the original observation, which is used in 

analysis instead of the original number. Conclusions are drawn from 

analysis on the transformed scale, though means and confidence limits 

may be transformed back to original terms for summarization. 

Bartlett (1937) showed that use of square roots of population counts 
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was better in theory than use of the counts themselves in analysis. He 

suggested use of + 0.5 for small numbers; this gives a definite value 

to a zero count. Bliss (1938) published the “angle” transformation for 

percentage counts; it is sin~1v/p, and is tabled in Snedecor’s text (1956). 

Cochran (1938) reviews these situations and points out the use of logarithms 

as a transformation for measurement data varying widely from class to 

class, also for very variable population counts. Williams (1937) used the 

log of (X + 1) for highly variable insect trap data, with marked improve¬ 

ment. 

These three are the principal transformations in use, but some modifica¬ 

tions of them, or new transformations, have been proposed. IJpholt (1942), 

Beall (1942), and Fryer et al (1943) expressed dissatisfaction with existing 

transformations; the two latter articles proposed new ones. A transforma¬ 

tion may be worked out for a specific problem, using methods outlined by 

Beall (1942). 

On the whole, transformations are not of much help unless the need for 

them is extreme. Milne (1943) showed with sheep-tick counts that trans¬ 

formed and untransformed figures gave similar results in analysis. Wil¬ 

liams’s highly variable trap counts are an example of a situation where a 

transformation is needed. Another example is an analysis of percentage 

mortalities, with some classes near 50% and some near 100%. In such 

extreme cases, transformation will give more trustworthy results, and will 

often show differences not to be detected by analysis without transforma¬ 

tion. In more ordinary cases, analysis of enumerations with and without 

transformation will often give closely equivalent results. The writer (Wad- 

ley 1943b) has proposed some standards for decision as to when to trans¬ 

form percentage counts. Percentages for analysis without transformation 

should be based on adequate and similar numbers; should be between 

10 and 90%; and should, if possible, have over 20 of both individuals 

succeeding and failing. 

9. Special problems in biology. Probit analysis and biological assay 

A considerable literature has grown up around the dosage-mortality 

curve, especially since Bliss’s articles (1935). Finney (1952) has summed 

up much of this. It concerns an application of regression, to the relation 

of percentage mortality in insects and other organisms, to increasing- 

concentration of a toxicant. The curve is S shaped, with the lower bend 

very small (“asymmetric sigmoid”). If logs of concentration are used, 

the curve becomes symmetric; if percentages of mortality are converted to 

standard deviation values or “probits,” something like a linear relation 

results. Bliss and others have developed intensive methods of fitting a 
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regression line to mathematically weighted values, estimating concentra¬ 

tion needed for 50% (or other mortality), and comparing poisons through 

these estimates. The logical basis for comparison is the ratio of concen¬ 

trations (or difference of their logs) needed for a given effect. The percent¬ 

age mortalities have expected variances, which give a basis for testing 

Table 9. Distribution points of “t” 

Degrees of freedom 
“t” for probability level of 

50% 5% 1% 

2 — 4.30 9.92 

3 3.18 5.84 

4 0.74 2.78 4.60 

6 2.45 3.71 

8 2.31 3.36 

10 0.70 2.23 3.17 

12 2.18 3.06 

15 2.13 2.95 

20 0.69 2.09 2.85 

40 2.02 2.70 

100 1.98 2.63 
co 0.6745 1.96 2.58 

This table is adapted by permission from Statistical Methods, fifth edition, by 

George W. Snedecor, copyright 1956 by the Iowa State University Press. 

Table 10. Abridged table of F, 5% 

Degrees of 
freedom for 

Degrees of freedom for greater mean square 

lesser mean 
square 1 2 3 4 5 6 8 10 15 20 100 

1 161 200 216 225 230 234 239 242 246 248 253 

2 18.51 19.00 19.16 19.25 19.30 19.33 19.37 19.39 19.42 19.44 19.49 

3 10.13 9.55 9.28 9.12 9.01 8.94 8.84 8.78 8.70 8.66 8.56 

4 7.71 6.94 6.59 6.39 6.26 6.16 6.04 5.96 5.86 5.80 5.66 

5 6.61 5.79 5.41 5.19 5.05 4.95 4.82 4.74 4.62 4.56 4.40 

6 5.99 5.14 4.76 4.53 4.39 4.28 4.15 4.06 3.94 3.87 3.71 

8 5.32 4.46 4.07 3.84 3.69 3.58 3.44 3.34 3.22 3.15 2.98 

10 4.96 4.10 3.71 3.48 3.33 3.22 3.07 2.97 2.84 2.77 2.59 

12 4.75 3.88 3.49 3.26 3.11 3.00 2.85 2.76 2.62 2.54 2.35 

15 4.54 3.68 3.29 3.06 2.90 2.79 2.64 2.55 2.41 2.33 2.12 

20 4.35 3.49 3.10 2.87 2.71 2.60 2.45 2.35 2.20 2.12 1.90 

50 4.03 3.18 2.79 2.56 2.40 2.29 2.13 2.02 1.88 1.78 1.52 

100 3.94 3.09 2.70 2.46 2.30 2.19 2.03 1.92 1.77 1.68 1.39 
00 3.84 2.99 2.60 2.37 2.21 2.09 1.94 1.83 1.66 1.57 1.24 

X2 3.84 5.98 7.80 9.48 11.05 12.54 15.52 18.30 24.90 31.40 — 

For only a few degrees of freedom, 1% F is several times as large as the 5% values; for 5 and 5, about dou¬ 

ble; for 15 and 15, it is about 50% greater. 

This table is adapted by permission from Statistical Methods, fifth edition, by George W. Snedecor, copy¬ 

right 1956 by the Iowa State University Press. 
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results by chi-square. Examples of calculation will be shown in a later 

chapter. 

Joint effect of insecticides has been discussed by Bliss (1939), Finney 

(1952), and others. Where a combination of insecticides gives an effect 

greater than could be expected from addition of their effects alone, we 

have synergism. This is discussed by the authors mentioned; the writer 

(Wadley 1945) gives short-cut methods for estimating synergism. 

When a measurement of reaction in each individual can be used, rather 

than the proportion killed, study follows more general methods. Concen¬ 

tration is often expressed as logarithms, giving a fairly linear relation. 

This graded response is often used with vertebrate subjects, but not often 

with insects. Comparison of reagents by their effect on organisms, whether 

of percentage affected or of graded response, is called biological assay. 
Campbell and Sullivan (1938) and Steiner (1939) discuss some older 

insecticide methods of value. Stomach poisons pose especially hard prob¬ 

lems in giving uniform doses. 

10. References 

Out of a host of good textbooks available, a few may be cited which 

have been useful to the writer. Those selected have clear and practical 

approaches not too hard for the working scientist. 

Ezekiel, Mordecai, and Fox, Karl A. 

1959. Methods of correlation and regression analysis; linear and curvilinear. 3rd 

ed., 548 pp. Wiley, New York. 

Good in correlation studies. Shows technical derivations in appendix. The authors 

are interested in economics, but approach is broad enough to be helpful to biol¬ 
ogists. 

Finney, D. J. 

1963. Probit analysis. Rev. ed., 318 pp. Cambridge U. P., New York. 

An excellent compendium on this special subject, important in entomology. 

Fisher, Ronald A. 

1958. Statistical methods for research workers. 13th ed., 356 pp. Hafner, New York, 

This work has been the foundation of great advances in the application of sta¬ 

tistics in experimental work. All the many editions are good; the later ones have 

more material. The writer uses the 10th edition, 1946. Fisher’s rather difficult 

style is easier after studying Snedecor and Goulden. 

Goulden, Cyril H. 

1952. Methods of statistical analysis. 2nd ed., 476 pp. Wiley, New York. 

An excellent text full of experimental viewpoint, following Fisher’s line of 

thought. 

Hoel, Paul G. 

1962. Introduction to mathematical statistics. 3rd ed., 253 pp. Wiley, New York. 

Well described by the title. 
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Smith, C. A. B. 

1966. Biomathematics. 4th ed. 2 vols. vol. 1 Algebra, geometry, calculus. 1965. 

vol. 2 Numerical methods, matrices, probability, statistics. In prep. Hafner, 

New York. 

Helpful for a simple approach to pure mathematics. 

Snedecor, George W. 

1956. Statistical methods. 5th ed., 534 pp. Iowa State, Iowa. 

This text has had a profound influence on American science in introduc¬ 

ing Fisher’s great advances in a moderately “painless” way. Earlier editions are 

somewhat simpler and easier than the fifth. 

Steel, Robert G. D., and Torrie, James H. 

1960. Principles and procedures of statistics. 481 pp. McGraw, New York. 

A new text of considerable value giving sound principles, good examples, and 

recent advances in ideas. 

Walker, Helen M. 

1951. Mathematics essential for elementary statistics. Rev. ed., 248 pp. Holt, 

Rinehart & Winston, New York. 

A self-teaching manual. 

Yule, G. U., and Kendall, M. G. 

1958. An introduction to the theory of statistics. 14th ed., 552 pp. Hafner, New 

York. 

This text has a long history of usefulness, and in a way connects mathematical 

and practical statistics. Older editions had many references to original work; 

present editions have fewer references. 
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CHAPTER 2 

Sampling 

A sample is defined as a portion of a population taken for study, in the 

hope that it will be representative enough to tell us what we need to know 
about the whole population. 

Entomologists usually show great interest in sampling. The necessity of 

making decisions about uncounted millions of insects from observation 

of a few thousand or a few hundred makes entomologists conscious of the 

need for sound sampling. For example, the writer once reared 53 insects of 

a certain species at 17°C., to estimate time required for development. The 

53 constituted a sample of the entire species, and the writer hoped to draw 
conclusions about the species from them. 

The writer has occasionally heard the remark (thankfully, seldom from 

entomologists) “we are interested only in the actual material studied.” 

This is a very illogical point of view, which can rob experimental science of 

its meaning. We are interested in the material studied, for what it can tell 
us of the whole population. 

Often we study insect infestation in a plot or field by sampling, when the 

field itself is a sample of the larger population investigated. Thus we have 

samples within samples. 

In some cases, as in quarantine problems, it is important only to see if 
the species is present at all or not. Then sampling is simply a matter of 

looking intensively in the likeliest places. In the more usual and more 

important cases, we are interested in the density of population and good 

sampling methods can improve results and reduce work. In entomology we 

practically never develop estimates of the total population of a field or re¬ 
gion, such as are developed by Census people and some economists. We 

could develop such estimates, but in practice we always estimate densities 
or rates of infestation. These seem more sensible and helpful in our insect 

populations. The number of com borers per 100 stalks is a good example. 

In general, dense populations vary more absolutely, but less proportion¬ 
ately, than do sparse ones. 

1. Essentials of sampling 

In sampling we wish to attain representativeness to get as accurate a pic¬ 

ture as possible; to avoid bias, which is a tendency to err persistently in one 
direction; to consider randomness. 

31 
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We judge representativeness partly by reproducibility; if repeated sam¬ 

ples give closely similar results, or if sampling error is low, we believe our 

samples to be representative. This condition is best achieved by getting 

the sample from as many parts of the population as possible. For example, 

if fruit in an orchard is to be judged from a sample of 1,000 apples, it is 

better to take 50 apples from each of 20 well-distributed trees, than to take 

250 apples from each of 4 trees. It might be still better to take 10 apples 

from each of 100 trees, but the time required for collection may be excessive. 

The limitation on spreading sampling is usually a practical one. Unskilled 

samplers sometimes think that a representative sample can be secured by 

“purposive” selection of units which they consider typical. Such sampling 

is unsafe and may lead to bias. The population to be sampled must be 

clearly defined. 

Freedom from bias is a second and related principle. Objectiveness, or 

freedom from personal choice, is an important factor. A man sampling 

plants in a field, for example, to determine percentage infested or diseased, 

may find that his eye strays subconsciously to the sort of plants he is in¬ 

terested in. Thus his sample shows too high an infestation. If he notices 

this, he is apt to adopt some device for taking the choice out of his own 

hands. Years ago, some students of Hessian fly on wheat threw their trowels 

well out into a wheat field, then took a strip of drill row nearest the trowels 

for study. A series of plants would thus be taken in one place, and several 

places would be taken, with bias pretty well eliminated. Not all bias is 

personal. In a study of yield data in individual drill rows of wheat, it was 

once found that every eighth row was deficient in yield, probably because 

of a defect in the drill. A sampling scheme based on taking some of every 

eighth row would give badly biased results. Bias is serious, especially if 

unrecognized; a biased sample may be very reproducible and misleading. 

Randomness may be defined, in a simple way, as giving every unit in 

the population an equal chance to appear in the sample. Representativeness 

and freedom from bias are needed for a good estimate of the population 

mean. Randomness is to insure a good estimate of sampling variation or 

error. Fisher (1960) makes clear that randomization is the basis of validity 

in the error estimate. Randomization is achieved by some system of drawing- 

numbers or such devices (see Snedecor 1956 for tables of random numbers). 

As a simple example, suppose we are going to measure 20 corn stalks as a 

sample of height in a corn field. We draw a number to indicate which row 

to take, a second number to indicate the order of a plant in a row, and with 

these two numbers we have located a stalk at random. Repeating the process 

20 times will make up the sample. In practice, sampling from field or non- 

field material may not be subject to such elaborate procedure. We try to 

achieve a fairfy wide distribution of units and to rule out personal choice, 
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and feel some confidence that choice is practically random. However, in 
cases where doubt is felt, a careful randomization is reassuring. 

2. Interrelation of factors 

A random sample is unlikely to be biased. Bias may be avoided, however, 

without randomness. Randomness and representativeness are somewhat in 
conflict. Often a more accurate estimate can come from a sample with more 

even distribution than a fully random sample. Randomness gives us a valid 
error estimate for the mean. The estimation of the mean itself is of course 

the primary object. If we desire merely to estimate conditions at a single 

time and place, we might even dispense with an error estimate altogether. 

But if comparisons are to be made with other times and places, as is usual, 

the error estimate is vital. 
If the units of a sample are spaced absolutely evenly through the field, 

we have a systematic sample. The equivalent in laboratory material is to 
take every nth unit in regular order; when the starting point is once deter¬ 

mined the sample is fixed. The systematic sample differs somewhat in its 

behavior from a random sample. Sometimes, in very uniform material, 

they behave alike. But in a field or population varying from part to part, 

the systematic sample will be more accurate than a random sample. On the 
other hand, if a variance and standard error of the mean is calculated in a 

systematic sample as if it were random, the standard error will be higher 

than it would with a random sample. Thus the systematic sample does not 

give a trustworthy error estimate; while the random sample yields a helpful 

error estimate. Efforts to calculate errors for systematic samples by special 
methods have not been very satisfactory. The even distribution gives an 

accurate estimate of the mean, and by including a maximum of variation, 
gives too high an error. 

A useful and common practice is to compromise and restrict randomness, 
dividing the field into parts as uniform as possible within, and getting the 

major variation between parts. Then each part is sampled randomly. This 

preserves much of the accuracy of the systematic sample, and retains some 
randomness as a basis for error. This kind of restricted sampling is often 

called stratified random sampling. The variance within parts or strata is 
the basis for the standard error of the mean, which is usually lower than for 

a wholly random sample. 

In speaking of measuring stalks in a field, the plan of measuring 20 plants 

each at a separate place was noted. In practice we would probably go to 

fewer spots in the field and take several stalks in each place, to save time. 
The variance between adjacent stalks, however, tends to be low and inade¬ 

quate for an error estimate. The error should in such a case be based on spot 
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means; if stratified sampling is practiced, there should be several spots in a 

stratum. Even if 3 complete but separated rows in the field were taken, we 
would strictly speaking only have 3 units in the sample. Several sampling 

methods are diagrammed in figure 1. 

3. Comparison of methods 

A concrete example may be drawn from insect counts recorded by Fleming 

and Baker (1936); the writer had access to the detailed records. There were 
2,500 individual square-foot counts of Japanese beetle larvae in a 50 X 50 

foot area. Populations at that time were high and numbers rather uniform, 

so that it did not seem necessary to transform counts for analysis. Samples 
were taken by fully random, systematic, and stratified random plans, with 

50 square-foot units per sample. This gave an approach to the actual field 
conditions under which insect populations must be estimated. 

Five samples were taken by each method. The systematic samples were 
taken by dividing the area into 50 rectangles, each 5 X 10 units, and taking 

a unit at the same position in each rectangle. The starting point was changed 

for each complete sample. Purely random samples were taken by locating 

a row and column, randomly, to fix each unit. Stratified random samples 

were taken by dividing the area into 25 squares, each 10 X 10, and taking 

2 units by random choice in each square. 

The 5 purely random samples gave means and standard deviations as in 

table 1. 
The standard error of the mean (averaged as squares) shows an average 

value of about 0.9. The standard deviation calculated empirically among 

the 5 means is a little over 1, with a fairly good agreement. This demon¬ 

strates roughly that a useful measure of reproducibility can be calculated 

from a single sample. 

When the 5 systematic samples were used as if they were random, results 

were secured as in table 2. 
The pooled standard deviation is 7.2, which will give an estimate of 

standard error of the mean of 50 a little over 1.0. Actually, however, the 
empirical standard deviation calculated among the 5 means is only about 

0.5. 

Table 1 

l 2 3 4 5 

Mean 18.5 19.3 20.5 19.3 17.7 

S.D. 6.3 5.9 7.6 5.5 6.4 

S X 0.9 0.8 1.1 0.8 0.9 
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Table 2 

l 2 3 4 5 

Mean 19.1 19.4 19.6 18.6 18.4 
S.D. 6.8 7.3 7.1 7.5 7.0 

This illustrates the tendency of standard deviations to run high, and 
means to be more reproducible, in systematic than in random samples. It 
shows that systematic samples are likely not to yield a trustworthy error 
estimate. 

Each of the 5 stratified random samples was studied by analysis of vari¬ 
ance. A typical analysis is shown in table 3. 

The standard deviation of random sampling is estimated as \/34.8 or 
5.9; the standard error of a mean of 50 as y/34.8/50 or about 0.8. For the 
5 samples results are shown in table 4. 

The pooled standard deviation is about 6, the estimate of s* about 0.8, 
and the standard deviation of the 5 means computed about the true mean 
is about 0.7. This shows that the error estimate from any one sample is a 
useful measure. 

The accuracy of the three methods is reflected in the standard deviation 
of sample means around the general mean; fully random 1.0, systematic 0.5, 
stratified random 0.7. Thus the stratified random method conserves ac¬ 
curacy and at the same time permits a useful error estimate. Accuracy may 
be improved by selecting the strata to be as uniform within (in respect to 
the measure studied) as possible, even though they are not of regular shape. 
In the example above regular size and shape of the strata were arbitrarily 
fixed. 

Table 3 

Degrees of 
freedom Sum of squares Mean square 

Between blocks 24 1946.5 81.1 
Within blocks 25 869.5 34.8 

Table 4 

l 2 3 4 5 

Mean 19.2 20.3 19.4 18.5 18.9 
S.D. (within stratum) 4.9 6.7 5.1 5.9 7.0 
Sx estimated 0.7 0.9 0.7 0.8 1.0 
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4. Devices for improving sampling 

The stratified random sampling plan is widely usable. When the number 

of units taken in each part is proportional to the size of the parts, the sam¬ 

ple is self-weighting. Weighting will be discussed more fully later. A refined 

mathematical method of determining numbers for each subdivision is to 

make them jointly proportional to size and standard deviation where the 

latter is known; that is, proportional to the product of these quantities. 

Where all standard deviations are similar, the number of units taken in 

each part is proportional to the size of the part. 

In much insect work such choice of size of subdivision sample may lead 

to oversampling of a part of the field that is large in size but small in im¬ 

portance, or to the reverse. Perhaps as good a method as any is to sample 

each subdivision as adequately as possible and combine the results if a gen¬ 

eral average is needed. 

In one special situation the writer once suggested a sort of tandem sam¬ 

pling. With field populations of aphids, density varies enormously, from 

sparse populations hard to find to swarms literally coating plants. The sug¬ 

gestion was to make a preliminary view to find roughly the level of popu¬ 

lation, and later to use sampling methods for dense populations different 

from those for sparse populations. In this as in other situations, it is desira¬ 

ble to use standard methods that will mean the same in the hands of various 

samplers. 

Subsampling or compound sampling is another device important and 

practical in many situations. The major sampling units are not completely 

studied, but data are determined by subsamples. A familiar illustration is 

that of estimating the wheat yield of an area by visiting a number of fields 

and estimating the yield of each one by a moderate-sized sample. We may 

regard experimental plots as units of a sample, and if the insect infestation 

of each plot is itself estimated by sampling, we have compound sampling. 

Analysis of variance applies conveniently to such cases, and by such analysis 

we can separate the effect of the major and minor orders of sampling on 

precision. The sampling variance of major units functions as error for ques¬ 

tions based on these units; that of minor units within the large groups will 

be included in the major error. 

In problems of broad scope compound sampling is more usual than simple 

sampling. In practical work it is not necessary to use randomness in locating 

minor units within major units, but it is necessary if the minor units are 

to be used in studying technique. Major units should have some element of 

randomness, as error estimates are based on them. 

Another type of subsampling is the sampling in the laboratory of material 

gathered as a composite sample from the field. This practice is familiar to 
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chemists and other laboratory technicians. Henderson and McBurnie (1943) 

have described a method of this type of subsampling with mite populations 

on citrus leaves that reduced labor considerably. In the setting up of such 

a method, it must be shown that no bias is brought about. Bias may be 

avoided by using more laborious methods of known exactness as a standard 

of comparison. Where two or more subsamples are provided for each sam¬ 

ple, subsampling variance may be determined. 

Henderson and McBurnie also describe mechanical methods of mite col¬ 

lection. Such methods are frequently developed by workers. They are not 

directly statistical, but are an outgrowth of desire to get the most out of 

limited time and funds. Pielou (1957) has contributed something to theory 

in such problems. Sometimes insects can be weighed or measured if an 

efficient collection procedure is available, and if the relation of the quantity 

thus determined to actual numbers is established. 

The last type of subsampling is a form of double sampling in which the 

characteristic of interest is hard to measure. We therefore estimate a related 

characteristic, easier to handle, on a good-size sample, and estimate the 

relation of the desired characteristic from a more limited sample, with a 

saving in labor. Double sampling takes various forms. In a study of Eu¬ 

ropean corn borer populations, the desired characteristic is borers per 100 

plants, but counting is laborious, requiring careful dissection of stalks. 

Therefore, the percentage of stalks infected is easily estimated on a large 

sample, and a limited sample is dissected to determine the number of borers 

per infested stalk. The final figure is the product of these two. Cases might 

occur in which the final figure would be a quotient of two variables. In other 

cases regression of the first character on the second is estimated from a 

medium-sized sample, the second is then estimated from a large sample, 

and the final figure is computed from the estimated regression applied to 

the results of the large sample. This method could be applied when numbers 

of insects are estimated from measurement or weight. 

Double sampling is useful where material has been placed in categories 

by rapid inspecting methods, as has sometimes been done with number of 

scale insects on citrus, or amount of damage by earworms to corn (Wadley 

1949). If material in each category is sampled and the samples are used in 

actual counts, the means of these counts may be applied to the categories 

to form the estimates. Estimation can sometimes be considerably improved 

without a great increase in work. Determination of error in double sampling 

is complex. Where products or quotients are used, and are calculated sep¬ 

arately in every replication or major subdivision, error may be simply 

calculated among the final figures. 

An important development of recent years is sequential sampling. The 

sampling units are taken and examined, and the sample repeatedly evalu- 
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ated during the work until the information is sufficient to place the mean 

inside or outside of previously determined limits. Then work may stop. 

This will obviously often result in a saving in work. The method is adaptable 

to some surveys. Waters (1955) has had encouraging results with sequential 

sampling in forest insect surveys. His article describes procedure and gives 

mathematical methods and references. 

In insect-population work some index of the population is often used 

rather than an actual count. Sometimes active or numerous insects are 

caught with a sweep net, instead of being counted on the plants. Trap 

catches or screen counts often serve as indices of abundance. Use of such 

methods assumes a correlation; the correlation must be established if they 

are to have any usefulness. Investigation sometimes shows that sweeping, 

for example, gives different results on windy and calm days, or that it gives 

an incorrect picture of sex ratio. These methods are often useful for im¬ 

mediate decisions, but correlation with exact populations must be estab¬ 

lished if they are to lead to real gains in the knowledge of insect populations. 

One method of interpreting sampling results must be viewed with doubt. 

A sampler will sometimes array his data in classes by some qualitative 

criterion, assign rank numbers to the classes, and proceed to use these num¬ 

bers as if they were measurements. If infestations are graded as 1, 2, and 3, 

for example, we have no assurance that 2 is twice as heavy as 1, or that 3 

is as heavy as 1 and 2 put together; 2 may be five times as heavy as 1. Such 

analysis may result in loss of part of the value of an experiment or sampling- 

study. Double sampling can be applied in this situation with profit. 

5. Some special considerations 

In sampling in entomology we are generally interested in density of popu¬ 

lation or in the proportion of the population affected by some character¬ 

istic. Both are determined by counting indivisible units, rather than by 

measuring. This means that sampling variance has a limiting value below 

which it cannot be expected to go. No amount of precision in procedure 

will make the variance lower than the minimum value; for percentage 

counts, the binomial variance pq/n; for population counts, the mean. The 

standard error of the mean may of course be reduced by taking larger 

samples. In low population densities the variance among units is usually 

close to the theoretical minimum, and in high densities it is greater in pro¬ 

portion to this theoretical value. In low populations sampling error is lower 

absolutely, and higher proportionally to the mean than in high populations. 

In percentage counts variance between successive counts is comparatively 

low near zero and 100 percent, and higher at intermediate values. 

A special consideration is that of sampling from a limited population. 
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If the sample makes up a large part of the entire population, it approaches 

a census. If we measure every plant in a field, we know the average ab¬ 

solutely, without any sampling. If we measure 25 or 50 percent of the 

plants, the true standard error of the mean will be lower than the classic 

formula indicates. We can of course estimate the standard deviation accu¬ 

rately from such a large sample. If n is the number of units in the sample 

and N the number in the whole field of inquiry s£ = (s/vV) \/1 — n/N. 

Using variances as more convenient, we may write V£ = (V/ri) [1 — 

(n/N)]. If n is small in proportion to N, this is the ordinary formula, since 

1 — (n/N) is practically 1. Unless the sample is more than 10 percent of 

the whole, the adjustment is unimportant. It is of slight importance to 

entomologists, since our samples are usually small in proportion to our 

field of inquiry. One entomologist was sampling bark on a large tree for 

insect infestation and the units were extremely variable. He calculated the 

standard deviation from a number of units, and attempted to estimate 

how many units would be required for a desired low standard error, using 

the equation s£ = s/\/n. The answer was absurd, as it indicated that more 

units must be taken than existed on the tree. The equation V£ = (V/n) 

[1 — (n/N)] gave a reasonable answer. The idea of taking a certain per¬ 

centage of the population in a sample, often seen in economics, does not 

apply well in entomology. The size of the sample, rather than its percentage, 

gives precision. 

6. Weighting 

Weighting in sampling results has caused considerable confusion. The 

basic principles are as follows: (a) If several parallel samples from the 

same material are to be combined, weighting by number of units in the 

sample is appropriate, (b) If the samples represent different parts of a 

field of inquiry, the best estimate of the average is obtained by weighting 

by the sizes of these parts. If the parts are equal or nearly so, no weighting 

is needed. It is assumed that each part is sampled fairly adequately. The 

mathematical principle of weighting by reciprocal of variance is involved; 

it has proved of value in some situations such as probit analysis, but need 

not be developed further here. 

As an example of weighting, suppose that three samples, such as those 

discussed in the section on restricted randomness, are taken from the field, 

each representing all parts of the field. If one is of 50 units and the other 

are two of 100 each, they should be weighted accordingly. This can be 

accomplished by adding the totals and dividing by 250 for the mean per 

unit. If we wish to work with the means per unit, already calculated from 

the three samples, we can multiply the small sample mean by 50, each of 
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the other two means by 100, add the products, and divide by 250. If we 

keep the same proportions, we can simplify the multipliers to 5, 10, and 

10 and divide by 25, or to 0.2, 0.4, and 0.4 without any division of the sum. 

Suppose, however, that the field is of 40 acres, 16 of one soil type and 

24 of another. In combining the two samples we give the mean of one part 

a weight of 16/40, the other a weight of 24/40. The result is our best esti¬ 

mate of the average condition in the entire field. 

It is obvious that in the latter case we may be combining things not 

very similar, and that a more critical procedure would be to state the aver¬ 

ages separately. However, we are constantly being called upon for state¬ 

ments of averages, such as the average crop yield for a State, or the average 

infestation of some insect for a county. Obviously, we will not always know 

the proper weights, and so must use approximate estimates or assume 

equality. 

Snedecor (1956) discusses sampling and standard errors of weighted 

averages in more detail than can be done here. Where we have several 

parallel samples from the same material, we are really combining several 

samples into a single larger sample. The variance and standard error may 

be calculated as if it were one large sample. Variances, if already calculated, 

may be pooled by adding sums of squares of deviations and degrees of free¬ 

dom, and dividing. 

When several samples from different parts of the material are combined, 

Snedecor gives the formula for variance of a weighted average as 

V£w = S[Vw2/K]/[S(w)]2 

where V is the variance among individual units in each class, K is the class 

number, and w is the weight to be used in each. The principle is that, when 

variances from unlike classes are combined, they should be weighted by 

the squares of the class weights instead of being pooled as are those from 

like classes. 

In one case of insect-population sampling, four environments with equal 

weight had 6 units each, and a fifth had 70 units, but was to be weighted 

by only 3.5 because of its small area, while the other environments had 

weights of 6 each. To obtain a weighted average, the statistics are as in 

table 5. 

The weighted mean is [(6.0 X 8.3) + (6.0 X 10.7) + • • • + (3.5 X 13.5)]/ 

27.5, or 8.1. The variance of this mean is the sum of the column Vw2/K 
divided by the squared sum of the w’s. 

234/(27.5)2 = 0.31 

Extracting the square root, we obtain s£ as 0.56 (rounding to 0.6). The 
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Table 5 

Environment Mean Number of 
units (K) Weight (w) Variance of 

units (F) Vwy'K 

A 8.3 6 6.0 13 (36 X 13)/6 = 78 
B 10.7 6 6.0 7 (36 X 7)/6 = 42 
C 7.0 6 6.0 11 (36 X 11)/6 = 66 
D 3.3 6 6.0 7 (36 X 7)/6 = 42 
E 13.5 70 3.5 35 (12.25 X 35)/70 - 6 

Sum — — 27.5 — 234 

mean then is 8.1 =b 0.6. The large variation between environments does 

not enter the standard error here. 

7. Planning and interpreting sampling 

In planning a sampling study the first thing to consider is the objective. 

The information sought should be clearly defined. If we desire merely to 

record the presence or absence of an insect species, elaborate sampling- 

suited to estimating population density will not be needed. We need only 

look carefully in likely places. This situation partakes more of quarantine 

than of research philosophy. If we desire to estimate density, however, 

looking in the likeliest places is almost sure to give too high an estimate. 

When sampling for density we must inspect both lightly and heavily in¬ 

fested places. 

Next we must consider the methods to be used. We should keep in mind 

the factors of representativeness, freedom from bias, and randomness, with 

their functions. Efficiently planned sampling will give better figures for 

the same amount of work and expense, or equally good figures with less 

work, than poorly planned sampling. We should utilize all available pre¬ 

vious information. Our object in quantitative sampling is, first, to estimate 

the average numbers, and second, to obtain an idea of the variability. If 

we have some preliminary idea of variability, we can estimate the amount 

of sampling needed for an estimate of given accuracy and precision. This 

accuracy can be measured as the standard error of the mean. In the equa¬ 

tion Si = s/\/n we can supply a preliminary estimate of s, an acceptable 

figure for s£ , and solve for the n. The differences measurable or likely to 

be missed by the sampling can also be defined. If no preliminary estimate 

of s is available, it is often wise to carry on some exploratory work to obtain 

one. In such work we will be sampling for the standard deviation or vari¬ 

ance rather than the mean. With insect-population counts we may always 

have in mind the minimum theoretical standard deviation. 

It is often possible to modify the plan of work midway in investigations, 
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if study of early results suggest methods of gaining efficiency. The pre¬ 

cision (measured as s£) of determination of the mean is governed only by 

the size of the sample (n) and the variability (s). The percentage of the 

entire population in the sample has no great influence. Taking a fixed per¬ 

centage is not a sound statistical procedure; a 5-percent sample is a better 

sample in a large population than in a small one. 

Whether such devices as stratified sampling, compound sampling, or 

double sampling will be helpful depends on the nature of the problem. A 

knowledge of the material to be sampled will aid in efficient stratification. 

Arbitrary subdivisions can be made if there is no such knowledge, but more 

efficient work is usually possible if the subdivisions can be made along 

lines of known variation. 

We may have fields within a district as our principal sample units, and 

small areas within fields as minor or subsample units. The variation of 

fields within a district is more important than that of units within fields. 

The degree to which each source of variation contributes to the error of 

the final results can be evaluated by use of analysis of variance. 

A good example is the preharvest estimation of wheat yield in a county, 

by using 20 fields as units in a sample of the area, and well-distributed but 

small subsamples in each field. A small sample will give us nearly as good 

an idea of the yield in a field as a large one. Differences between fields will 

usually be larger than between units within fields. If we take a very large 

subsample, or even a complete harvest, of a few fields, we know the situa¬ 

tion in those fields very well, but we do not know the county average well, 

because fields vary. If we take limited subsamples in each of a large num¬ 

ber of fields, we get a better estimate of the county average for the same 

work. Grasshopper egg sampling (Davis and Wadley 1949) is a parallel 

case. 

In such a setup the standard error of the county mean will be estimated 

by calculating the standard deviation between field means and dividing it 

by the square root of the number of fields taken in the county. This stand¬ 

ard error will include the large fielcl-to-field variation, and will also have a 

smaller component caused by sampling variation within fields. If sampling 

variation within fields is absent (if a complete harvest of each was taken), 

the standard error will be somewhat smaller. By the use of analysis of 

variance we can estimate the error due to within-field sampling, if within- 

field units as well as fields are taken randomly. The units can be stated in 

any convenient form, as yield per subsample unit or per acre, in pounds 

or in bushels. Suppose we have 20 fields and 5 units per field, with results 

as follows: Between fields—Degrees of freedom 19, Mean Square 89; within 

fields—d.f. 80, M.S. 29. 

From this summary, using the mean square within fields as B, the mean 
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square between fields as kA + B, where k is the number per field (5), we 

can calculate A, the variance between fields over and above that within 

fields, on a unit basis. This is estimated as (89 — 29)/5, or 12. Variance of 

the mean for any combination of n fields and k units per field will be esti¬ 

mated as A/n -f B/nk. In this case it will be 12/20 + 29/100, or 0.89, 

and the standard error will be y/0.89, or about 0.94. If we have 50 fields 

with 2 units per field, the expected variance of the county mean will be 

12/50 + 29/100, or 0.53, and the standard error about 0.73. For 10 fields 

and 10 units per field the standard error would be 1.22. 

In this manner we can estimate the effect of changes in sampling plan. 

To spread out sampling will always give a gain if the mean square between 

fields exceeds significantly that within fields, and if A has a real existence, 

which is usually true. 

The analysis shown can be adapted to the study of small adjacent areas 

within one field, and thus to comparison of a few large units with a larger 

number of smaller units. In such a comparison we think of the large units 

as made up of adjacent smaller units, and make our analysis within and 

between larger units. If the smaller units completely occupy the larger 

unit, they are essentially random; the random choice of the larger unit 

makes them so. By this method 4 or 5 spots in a field, with 25 units per 

spot, were found to give as precise results as 2 larger spots with 100 units 

per spot. In orchard sampling for results of spraying, 8 plots of 1 tree each 

gave as good results as 4 plots of 3 trees each, under conditions of the 

orchards used. 

Labor and other costs must enter into sampling plans. Very fine subdivi¬ 

sion of sampling will often greatly increase the labor of covering the ground. 

Examination of additional units in a spot may add little expense, and it will 

increase precision somewhat, even though not so much as studying more 

spots. We must figure, not the lowest standard error possible, but one that 

will be acceptably low and within our limits of work and expense. Often a 

compromise can be made and a good plan worked out that will hold down 

cost and provide for enough exactness. In an elaborate sampling investiga¬ 

tion, however, it may pay to subject costs as well as variances to a more 

exact study. If we have the variance of large sample units and of subsample 

units, the cost of each type of unit, and the total allowable cost, we can 

solve for the best combination of n and k in the following equations: 

V£ = A/n + B/nk 

T (total cost) = nCD + nkC 

Here C represents the direct cost of each subunit, CD the overhead cost of 

each major unit above subunit costs; C, CD, A, B, and T are fixed; and we 
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solve by calculus for n and k giving the lowest value for V£ . Tippett (1940) 

treats this problem in his chapter on experiments. In the solution 

k = j or Jand n = T/(CD + kC). 

For a fixed V± and lowest total cost, k is the same, and n is estimated as 

(kA + B)/kV£ (Davis and Wadley 1949). 

8. Literature cited, and other references 

Some of the books listed below contain good discussions of sampling prin¬ 

ciples. Snedecor’s text contains much discussion of sampling, with the last 

chapter devoted to sampling principles. Cochran (1953) gives some recent 

advances, and there are other good recent texts. Much recent work is quite 

complex, and is largely concerned with questionnaire methods. Morris 

(1960) has published a valuable discussion of insect sampling with many 

references. 
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CHAPTER 3 

Experimental Design 

1. Philosophy of experimentation 

An experiment may be defined as a trial involving comparisons or testing 

theories. The term also carries with it the idea that conditions are arranged 

to some extent; that at least part of the extraneous variation is controlled, 

so that the things to be compared are different, and other conditions are 

the same. 

An actual example may be drawn upon to illustrate the difference be¬ 

tween experimentation and ordinary sampling. Suppose a small area of a 

forest to be treated by a certain method, and a second part left untreated. 

Insect populations on the two areas are to be compared by sampling. Now 

the samples are perfectly valid to compare two areas as such, or to compare 

the same area at two different times. The sampling may succeed in proving 

the two areas are different, but cannot furnish evidence that the treatment- 

caused the difference. The experimenter will be unable to say whether the 

difference is caused by treatment, by characteristics of the two areas, or 

by a combination of both. To secure real evidence on the effect of treat¬ 

ment, several separate or independent areas are necessary. 

The philosophy of experimentation needs more attention than it receives 

in many cases. Scientific proof, the place of fact and inference, of induction 

and deduction, will repay study. Some experimenters have an intuitive 

desire to explain away the variation in each individual case, and refine 

their procedure and results to an undue degree. This approach if carried 

too far may lead to results which other experimenters fail to duplicate, or 

to results close to previous expectation. Procedure should of course be 

precise, but after it is once launched results should be accepted by the 

experimenter. Hard-won data may be discarded if breakdown in experi¬ 

mental conditions is shown, but should not be discarded for statistical 

reasons alone, or because they point to unexpected conclusions. We have 

seen much more progress in experimental work; trying for undue refinement 

has been replaced by hopeful comparisons, which are made to see what 

differences appear in spite of variation. We must accept the fact that a 

certain amount of variation is normal in biology, and accept and utilize 

this variation to give an estimate of experimental error. 

Thinking of experimental problems will lead to formation of hypotheses 

47 
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or questions for test. The experiment should be set up to test these questions 

as positively as possible. The experimenter should make up his mind in 

advance what decision will result from each possible outcome of the experi¬ 

ment. After the data are in, he should stick to his decision. A doubtful 

decision may call for more trials, but failure to accept an unexpected result 

is undesirable. Such failures have held back progress at times. 

Needs in experimentation are threefold. First, objectives should be 

clarified as in the foregoing discussion. Second, the experiment should be 

valid, or capable of giving real evidence on the question tested. The forest 

test mentioned above was lacking in validity. Third, the experiment should 

be as efficient as possible, so as to give maximum results for time and 

expense. If careful planning gives a desired result with % of the work of a 

less well planned test, a nice gain has been made. Most printed discussions 

of experimental design deal largely with efficiency, taking for granted 

clarity of objectives and validity. However, we are not past the need for 

considering all three. The experimenter should endeavor to do reproducible 

work; the methods and criteria should be described so that they can be 

carried out by others. 

2. Some principles of experimental design 

We may state a useful classification of experiments as preliminary, 

critical, and extensive. Preliminary tests are limited in extent, and have 

the function of exploring methods or showing the behavior of unfamiliar 

material. Critical experiments are carefully planned, and aim to lead to 

final decisions if possible. Extensive experiments are meant to reduce 

proved principles to practice, and they may approach the commercial in 

scale. Biometric methods are helpful with all the classes, but are most 

essential with critical experiments. 

Two things should be remembered in studying design methods. Experi¬ 

mental design has developed along with analysis of variance, which is the 

solution for compound variation, and the design used specifies the form of 

analysis of results. Design has largety grown up in field plot studies, with 

ever-present field variation, and has been adapted later to nonfield experi¬ 

ments. 

Any self-contained critical experiment must provide for two things; a 

fair comparison of things or “treatments” tested, and an estimate of error 

of comparisons. This error can be defined as the variation which would be 

shown if there were no real difference between things tested. We can esti¬ 

mate it in a true sense, only by replication, or repetition of tests. In the 

hypothetical forest test mentioned, it is not provided for, but it would 

have been available if several areas had been treated. Randomization of 
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experimental treatments among experimental units is necessary to insure 

that the error estimate will be a good and valid one (Fisher 1956). The 

uncontrolled variation furnishes the error estimate. Sometimes it is a direct 

estimate; if treatments A and B are tested, the variation among the trials 

of A, and that among the trials of B, will give the error. Sometimes the data 

are cross-classified according to a controlled and an uncontrolled source 

of variation; then the differential effect or interaction furnishes the error 

estimate. By a controlled source we mean something reproducible such as a 

variety or a concentration. 

Several principles besides replication and randomization are important 

in development of experimental designs. The first is that of parallel com¬ 

parisons, comparing things side by side under as similar conditions as 

possible. Comparison of the yields of two varieties of wheat is much more 

precise, if they are compared side by side in the same years and the same 

fields, than if variety A is tested in several places, variety B in several other 

places. Comparison of several insecticides is much better if they are tested 

each time on the same days, in the same laboratory, and on samples from 

the same stock of insects. In planning the experiment, making these parallel 

comparisons corresponds to restrictions on randomization in sampling. 

Arrangement of such comparisons is the principal source of gain in effi¬ 

ciency. 

Where several things are to be tested, the question will often arise as to 

how many can be put in one experiment. For example, if one or more 

insecticides are to be tested in field plots, several strengths of application, 

and several schedules of repeated application, maj^ be used. A little study 

will show that fewer total experimental units or plots will be needed, if 

dosage is tested in one experiment, schedule in another. However, this will 

give no information about differential effect of dosage and schedule. An 

experiment having all combinations of all factors studied is called a “fac¬ 

torial” experiment. It will often be best in the long run, especially if differ¬ 

ential effects are important. The differential effects or interactions between 

controlled factors are subdivisions of treatment effect. They are not like 

the interactions mentioned above which are used as error, although they 

are estimated arithmetically in the same way. 

When two or more factors are mixed up in planning so that their effects 

are confused, they are said to be “confounded.” In the forest test mentioned, 

the effect of treatment was confounded with that of area. Unintentional 

confounding is wasteful, and defeats the aim of experiments, but careful 

and discriminating confounding has some uses in advanced experimental 

design. 

Plot size is a practical question of great importance in field experiments. 

The plots should be large enough to allow for expected border effect, and 
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to have an area in the center which will really reflect treatment conditions, 

and will supply enough material for study. Increasing size of plots tends 

to reduce error, but not as much as increasing their number. Small and 

numerous plots are thus more efficient than larger and fewer ones. Border 

effect is often not very important among closely similar treatments. Hence 

the tendency has been to reduce plot size. Such factors as competition 

among plants, dust or spray drift, and insect migration, must be considered. 

It has been repeatedly shown that in field crop tests, long narrow plots are 

more efficient than square ones. Plots in critical experiments should not 

be made large simply to simulate commercial procedure, where small plots 

will answer the experimental questions. Large plots are often needed in 

extensive experiments, but in critical experiments, use of large plots often 

causes considerable loss in efficiency. 

Several common mistakes in laying out experiments may be noted. The 

first is not considering the classification of experiments: putting treatments 

suited only for preliminary tests into the more mature critical experiments, 

or trying to make extensive experiments from critical ones. Lack of replica¬ 

tion and randomization has already been discussed. Use of inadequate 

values for error is related to lack of replication. Occasionally in a large- 

scale test such as the forest treatment mentioned the experimenter may 

divide the large plots after treatment into a large number of small subplots. 

Taking results from these, considerable analysis is possible, but it can have 

no bearing on the principal result of the experiment. If treatment compari¬ 

sons are based upon plots as units, error must also be based upon plots, 

not upon subplots. 

If determination of plot values is based on sampling, an analysis of 

experimental error may be made just as in compound sampling (Chapter 

2). The solution will help in determining the best number of plots per 

treatment and of samples per plot. Samples of this sort should be random 

if they are to be used in analysis of such error, but may be systematic if 

they are used merely to establish a plot mean. The same technique may be 

used to test effect of varying size of plots. If each plot is subdivided into 

several subplots, the analysis of error may be applied to determine the best 

combination of number of replications and number of subplots per plot. 

8. Simple practical designs 

The simplest design is that of unrestricted randomization, which corre¬ 

sponds to a completely random sample. In the field, with t treatments and 

n replications, the experimental area is divided into nt plots, and the several 

replications of each treatment are completely randomized among them. 

Several replications of one treatment may fall quite close together. The 
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analysis of variance of results is simply outlined as “between treatments” 

and “within treatments,” the latter variance functioning as error. The 

design is used only occasionally in the field, since a moderate restriction 

on randomness usually results in a good gain in precision with lower error 

estimate. In the unrestricted random layout, the variation between parts 

of the area enters into error too much. On the other hand, it is flexible, 

and if several treatments have different numbers of replications, analysis 

is not hampered. It is often used in laboratory experiments. The insect 

measurements of Chapter 1 were compared in an unrestricted random 

scheme. 

The second design to consider is the “randomized block,” the most 

widely useful of all designs. It is an application of the principle of parallel 

comparisons. In the field, for t treatments and n replications, the area is 

divided into n blocks of t plots each. Each block is selected to be as uniform 

within as possible, and if there are some known differences in the area they 

should come between blocks. The t treatments are assigned randomly to 

the t plots of each block. The analysis of variance of results separates 

variance for blocks (uncontrolled field variation); for treatments (con¬ 

trolled), and their interaction. The last-named variance functions as error. 

As a simple example, a test of 5 wheat varieties replicated 3 times may 

be cited. This calls for 3 blocks and 15 plots. The randomized field plan, 

with yields of varieties A to E, is given in table 1. 

Analysis is shown in tables 2 and 3. 

The F ratio for varieties is 22.6, highly significant for 4 and 8 

d.f. The standard error of the difference between two variety means is 

\/3.4 (y3 + %) or about 1.5; multiplied by t for 8 d.f. (2.3), this gives us 

about 3.5 for least significant difference. Thus A and C are significantly 

above B and E, and D is below them all. Modification of least significant 

difference tests is noted in Chapters 1 and 4. 

The blocks are designed to be as uniform within as possible, and to get 

most of the variation into the “between-blocks” category. If a known trend 

of variation crosses the area, the blocks may be laid off across the trend to 

get maximum difference, while the plots within each block may be laid 

off along the trend to make them as similar as possible. The gain is effi- 

Table 1 

Block I Block II Block III 

B 20 C 28 A 33 
D 18 A 30 E 26 
A 28 E 23 B 28 
C 29 D 16 C 30 
E 20 B 26 D 19 
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Table 2. Variety yields collected 

Variety 
(“treatment”) I II III Total Mean 

A 28 30 33 91 30.3 
B 20 26 28 74 24.7 

C 29 28 30 87 29.0 
D 18 16 19 53 17.7 

E 20 23 26 69 23.0 

Total 115 123 136 374 

The sum of squares of deviations: (28)2 + (20)2 + • • • + (26)2 — (374)2/15 = 
9704 - 9325 = 379. 

Sum between blocks: (115)2/5 + (123)175 + (136)2/5 - (374)2/15 = 45 

Sum between varieties: (91)2/3 + (74)2/3 + ••• + (69)2/3 — (374)2/15 = 307 

Sum for interaction, block X variety: 379 — 45 — 307 = 27 

Table 3. Summary of analysis of variance 

Source of variation Degrees of 
freedom 

Sum of 
squares 

Mean square 

Blocks 2 45 22.5 

Varieties 4 307 76.8 
Interaction (Error in 8 27 3.4 

this case) 

•ciency in this design comes from testing treatments under as similar condi¬ 

tions as possible in each replication; this gain may be increased by a careful 

layout. It is common, with insect populations in the field, to find a direc¬ 

tional trend in density which may be thus exploited. 

In nonfield experiments where the uncontrolled variation may be sub¬ 

divided thus, the randomized block plan can often be utilized. In animal 

feeding tests, the animals may be divided into groups according to gaining 

ability; the group then is the “block,” the animal the “plot.” In small 

animal tests the litter may act as the block; in skin tests where several are 

placed on an animal, one animal may be a block. Other cases might be 

cited; in laboratory tests a run or a day may be used as a block. 

In insect toxicity tests the level of kill often varies from day to day; the 

chief cause appears to be variation as to resistance in the stocks available 

for testing. The days may be treated as blocks, with a full set of treatments 

each day in random order, and with essentially random drawing of insects 

from stock for test. Some old data on mosquito larvicidal tests are cited. 

Under present practice we would use several concentrations of larvicide 

and run a more elaborate experiment, but these data will illustrate the 

application (table 4). 
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Table 4. Percentage of mortality among mosquito larvae and its analysis 

Insecticide (“treatment”) Day 1 Day 2 Day 3 Day 4 Day 5 

A 27 40 12 57 30 
B 58 82 48 88 55 

C 58 68 33 80 67 

d.f. s.s. M.S. F. 

Between days 4 3322 830 24.4 

Between insecticides 2 3164 1582 46.5 

Day X insecticide (error) 8 276 34 

These percentage counts are based on adequate and similar numbers 

(100 each), and all are between 10 and 90%; so that analysis without 

transformation is all right. The insecticides were of course all at the same 

concentration and hence comparable. This illustrates use of the randomized 

block plan in a laboratory test. 

This plan is very flexible. A whole treatment or replication may be 

omitted without hindering analysis. Snedecor (1956) gives instructions 

for analysis where one plot value is lost (a least square estimate of a value 

for carrying out symmetrical analysis), and for estimating the gain in 

efficiency over an unrestricted random experiment. The gain is usually a 

good one. 

The Latin square is a design of greater restriction and narrower adapta¬ 

tion. The field plot layout for n treatments is a set of n2 plots in n physical 

rows and n columns. The n treatments are assigned to n plots each, so that 

each treatment occurs once and only once in each row and each column, 

otherwise at random (a systematic rotation of assignment is undesirable). 

Table 5 gives a diagrammatic map of a typical Latin square. 

In analysis of results, the total sum of squares of deviations is divided 

just as in table 2, but for rows, columns, and treatments; sum of squares 

for error is secured by subtraction of these from the total. 

In spite of its glamorous name, the Latin square is adapted only to rather 

mature problems of 5 to 8 treatments. For these it tends to be a little more 

precise than the randomized block. It is harder to modify for omissions or 

losses, and is not good where unexpected upsets occur. Smaller squares 

Table 5. 

A 

C 
B 

D 
E 

Random Latin square for 5 treatments, A to E 

B C D E 

E A B D 

C D E A 
A E C B 

D B A C 
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have too few degrees of freedom for error; larger ones require too many 

replications. 

The Latin square has only a limited use in nonfield experiments. In some 

cases, sources of variation corresponding to rows and columns can be 

recognized and removed, but interactions cannot be separated. In the field 

the rows and columns are merely subdivisions of field variation, so this 

“confounding” of interactions is not serious. In laboratory problems the 

confounding is often undesirable. 

4. Complex practical designs 

The split-plot design is one which always interests students, and has 

definite uses. In the field, the plots are divided into subplots, which are 

used for subsidiary experimental treatments, randomized among the 

subplots of each plot. Thus the plot for the major series of treatments 

becomes the block for the minor series, and there are two randomizations. 

Two classes of experiments are adapted to the plan. In one, some of the 

treatments require large units; tillage or irrigation are such treatments. At 

the same time other treatments which can be done in small units, such as 

fungicide or fertilizer, can be carried along. In the other type of tests, 

treatments which are known to differ widely can be estimated with a large 

error, while others can be studied more closely in subunits. Nonfield experi¬ 

ments of this type can be developed where conditions parallel those of the 

split-plot in the field. The splitting may go even farther than two stages 

(Goulden 1952). 

As an example, suppose that in the wheat experiment of table 2, each 

of the 15 plots is divided into 3 parts, and 3 fungicidal treatments are 

randomized among the subplots of each plot. There will be then 45 yield 

values. The total sum of squares of deviations will be, for the 45, 5(X2) — 

[5(X)]2/45, if the values are denoted by X’s. There will be 15 plot values, 

each the sum of 3 X’s; the sum of squares of deviations (S.S.) among them 

will be [5(A) plot l]2/3 + [5(A) plot 2]2/3 + • • • + [S(X) plot 15]2/3 — 

[5(X)]2/45. S.S. for blocks is [5(X) Block I]2/15 + [5(X) Block II]2/15 + 

[5(X) Block III]2/15 — [5(X)]2/45. S.S. for varieties is [5(X) variety 

A]2/9 + • • • + [5(X) var. E]2/9 — [5(X)]2/45. The S.S. for interaction, 

block X variety, is: S.S. plots — S.S. varieties — S.S. blocks. This is 

“error A,” the major plot error which is used to compare varieties. 

Then a subsidiary table must be constructed of the 15 combinations of 

variety and fungicide, each the sum of 3 plots. For this 3X5 table with 

15 “cells,” S.S. for the table is [5(X) cell]2/3 + • • • + [5(X) cell 15]2/3 — 

[5(Ar)]2/45. S.S. for fungicide treatments is [*S(A) fungicide l]2/15 + • • • + 

[5(A) fungicide 3]2/15 — [5(X)]2/45. The S.S. variety has already been 
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Table 6. Scheme of split-plot analysis 

Source of variation Degrees of 
freedom 

Sum of squares, 
deviations as 

calculated 

Mean square 
quotient, 
S.S./d.f. 

Blocks 2 
u u 

Varieties 4 
u u 

B X V, Error A 8 
u u 

Fungicides 2 
u u 

F X V 8 
u u 

Error B 20 
a u 

calculated. The S.S. for interaction, variety X fungicide, is S.S. table — 

S.S. fungicide — S.S. variety. This is a subdivision of treatment effects, 

not an interaction used as error. The subplot error, or “error B,” is a com¬ 

pound of interactions of “fungicide X block” and “fungicide X variety X 

block.” These could be estimated by methods like those above, but it is 

convenient and quick to estimate Error B by subtracting all the S.S.’s 

already calculated from the total S.S. 

The analysis may then be summarized (table 6). Fungicides and “F X 

V” are compared to Error B to test significance. 

If actual calculations are made, they will be found to seem less complex 

than the outline above might appear. A worked example will be shown in 

Chapter 4. 

The “switchback” type of experiment is adapted to some studies where 

readings are taken several times, especially in large animal experiments. 

Brandt’s work on such problems is discussed by Cochran and Cox (1957). 

Treatments are rotated among experimental units. In entomology, in some 

tests of insect traps, rotation among trees and locations has been used. 

This is similar to the switchback. A type of analysis similar to the Latin 

square could be applied, accounting for variation among periods, locations, 

and trap types. 

In some experiments such as fertilizer trials, several levels of application 

(such as none, single, or double) are often used. The sum of squares between 

levels may be divided to see (1) if there is a difference, (2) if the difference 

takes the form of a straight line, curve, etc. This obviously has important 

application to insecticide treatments, and leads toward study of dosage- 

mortality curves, which has been developed almost into a separate branch 

of biometrics. 

The complex subject of analyses of combinations of similar experiments, 

conducted in different places or years, is well discussed by Cochran and Cox 

(1957). Experiments dealing with crop rotation (Crowther and Cochran 
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1942) are difficult to plan. There should if possible be enough plots to repre¬ 

sent each phase of the rotation each year, and to provide replication. 

Covariance analysis can add to the efficiency of some experiments, where 

some independent factor or “variate” is measured in each unit along with 

the variate of major interest. In stock feeding trials, the initial iceight of 

each animal is sometimes taken to assist in the analysis of gain in weight. If 

initial weight has a definite correlation with gain, use of covariance will im¬ 
prove the comparison of gain. 

A small experiment utilizing covariance analysis follows; other examples 

will be shown in Chapter 4. In laboratory spraying of a scale insect on twigs, 

living insects were counted on both sprayed and unsprayed portions of each 

twig. The circumstances were such that that sprayed area could not be 

counted before and after spraying; effectiveness was judged by comparing 

sprayed areas after spraying with unsprayed areas on the same twig. Three 

sprays were applied to 5 twigs each and numbers alive were counted. In 

practice, percentage of control would probably be estimated, but covari¬ 

ance is also a sound method of allowing for differences in original population. 

Tables 7 and 8 show data and analysis. 

The analysis is simply set out as between treatments, and between twigs 

within treatments. The independent variate (X) is the number on un¬ 

sprayed areas; the principal variate (F) is the number alive on sprayed 

Table 7. Live insects per unit of area 

Treatment A Treatment B Treatment C 

Unsprayed Sprayed Unsprayed Sprayed Unsprayed Sprayed 

26 7 118 42 28 2 

26 4 24 2 48 5 

86 54 78 15 88 32 
52 17 72 0 24 5 

86 10 42 3 28 11 

276 92 334 62 216 55 

Grand totals : 826 , 209. 

Table 8. Summary of covariance analysis 

Errors of estimate, 

Source of variation ^feedonf 5(*2) S(xy) W) W) - - [S(*y)PAS(*2) 

d.f. S.S. M.S. 

Sprays 2 1393 +87 155 — — — 

Within sprays (error) 12 11,694 +4918 3504 11 1436 131.0 

Total 14 13,087 +5005 3659 13 1745 — 

Difference for test — — — — 2 309 154.5 
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areas after spraying. The total S.S. for X is (26)2 + • • • + (28)2 — (826)2/ 

15 = 13,087. S.S. between sprays is (276)2/5 + (334)2/5 + (216)2/5 — 
(826)2/15 = 1393. The sum within sprays is 13,087 — 1393 = 11,694. In the 
same way the sums of squares for Y are calculated as 3659, 155, and 3504. 

Analysis of square roots might be a little more precise, but does not seem 

necessary in this illustrative example. 
Next we need the sums of products of deviations of X and Y (S.P. or 

S(xy)). The total S.P. is secured as in regression in Chapter 1; (26 X 7) + 

(26 X 4) + • • • + (28 X 11) ~ (209 X 826)/15 which is + 5005. The sum 

of products between sprays is (276 X 92)/5 + (334 X 62)/5 + (216 X 
55)/5 — (826 X 209)/15, or + 87. The S.P. within sprays is 5005 — 87 or + 

4918. Thus the S.P. is partitioned. 
The operations are carried on as indicated in the table. One degree of free¬ 

dom is subtracted under “Errors of estimate” because of allowance for re¬ 
gression as well as for mean. 

Without the covariance, the mean squares for sprays and error would be 

155/2 or 77.5, and 3504/12 or 292.0 respectively; with the covariance, these 

values are 154.5 and 131.0. Although the difference is not significant in either 

case, the greater tendency to significance and the lower error show what 

may be expected of covariance where there is a real correlation. Note that 

total or “treatment + error” and “error” are the only classifications used 

in adjustment. This is true also in more complex analyses; blocks, or rows 

and columns, are omitted from “errors of estimate” analysis as extraneous. 

Covariance is not itself an experimental design, except that the plan must 

include measurement of the independent variable in each unit. It can be 

used with various designs, and will often add information and avoid the ne¬ 
cessity of a more complex plan. In the above example the adjustment was 

for simple linear regression. More complex analyses sometimes adjust for a 

curved relation or for more than one independent variable. Treatment 

means may be adjusted, as shown by Snedecor (1956), to the values ex¬ 
pected when x is at the mean. 

5. Factorial design and confounding 

The idea of testing all combinations of 2 or more factors is basic in fac¬ 

torial design. The simplest combination is 2 X 2, as when 2 concentrations 

of an insecticide are tested, each with and without a supplement. The “2 X 

2 X 2” fertilizer trial is a classic for study; all combinations of nitrogen, 

phosphorus, and potassium are tried at 2 levels. The levels may be merely 
“none” and “some.” If manure, present or absent, is included in the test, 

we have a 2 X 2 X 2 X 2, or “24. ” Often there will be more than 2 levels; 

2 X 2 X 3, 3 X 3 X 3, or other combinations. 
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These plans are of value because they give estimates of interactions or 

differential effects. They must of course be replicated in some good design 

such as the randomized block. When several quantitative levels of a factor- 

are used, there is a possibility of estimating trend, both linear and curvi¬ 

linear. 

The technique of analysis known as the use of “single degrees of freedom” 

has a special application to such problems. Sneclecor (1956, Ch. 12, or Ch. 

15 in earlier editions) describes it. Where no confounding is present, a sum 

of squares can be derived for each individual degree of freedom; and if com¬ 

binations are properly chosen, the sums will add to the correct total. For 

the randomized blocks problem of table 2, with block totals of 115, 123, and 

136, there are two degrees of freedom for blocks. Each block has 5 values. 

The first degree of freedom is chosen as comparison of Block I with II; the 

second to compare Blocks I and II with Block III (table 9). 

The two sums of squares are each calculated as (net sum)2/divisor. They 

total 44.9, while the rounded sum for blocks in table 3 is 45. 

The divisors are the sums of squares of the number of times each block is 

used (coefficients), times the number of items in each. For the second de¬ 

gree of freedom, the divisor is [( — l)2 + ( — l)2 + ( + 2)2] 5, or 30. The net 

sum is —115 — 123 + 2(136) or +34. 

The comparisons must be chosen by certain rules. There are in — 1) to¬ 

tal d.f. Use any element by itself but once; it may be later used in combi¬ 

nations, but only once in the same combination. All must be used some¬ 

where. In the block analysis, Blocks I and II are used by themselves in the 

first degree of freedom. In the second, they are combined against III. The 

coefficients in any row must add to zero; the products of corresponding 

coefficients in any two rows must add to zero. For example, in table 9, prod¬ 

ucts of corresponding coefficients in the one below with the one above, are 

( —1) X ( + 1), ( — 1) X (— 1), (+2) X (0);or — 1, +1, 0. Ones and zeros are 

often omitted from the table, ones appearing as simply + or —. 

The treatment sum of squares of an insecticide-supplement 2X2 experi¬ 

ment may be illustrated. The degrees are set up to give effect of concen¬ 

tration, of supplement, and of interaction (table 10). The coefficients for 

the interaction may be secured by multiplication of the corresponding co¬ 

efficients directly above them. 

The single-degree method is occasionally useful to work out some special 

Table 9. Single-degree analysis of blocks 

Block I (115) Block II (123) Block III (136) Net sum Divisor (Net sum)2/divisor 

+ 1 -1 0 -8 10 8710 = 6.4 

-1 -1 +2 +34 30 38.5 
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Table 10. Scheme of single-degree analysis, 2X2 factorial 

Cx C2 Cl + s c2 + s 

1st degree—concentration -1 + 1 -1 +1 
2nd degree—supplement -1 -1 +1 +1 
3rd degree—interaction, (C X S) + 1 -1 -1 +1 

comparison. It is also valuable in working out new experimental schemes. 

A randomized block experiment can be completely analyzed thus, with 

every degree of freedom for treatment, error, etc. In the Latin square the 

error degrees cannot be separated because of confounding. 

Many other and more complex factorial plans and analyses could be de¬ 

scribed. They can be studied in sources given, especially Yates (1937) and 

Cochran and Cox (1957). It is possible to analyze factorials to bring out 

many interesting relations. In general, as complexity grows with greater 

numbers of factors and levels, there is less freedom in choice of combina¬ 

tions. The analysis must follow “formal” subdivisions as given in instruc¬ 

tions. 

In complex experiments the number of treatments may grow quite large. 

If in the field, many plots per block are needed; the large blocks grow varia¬ 

ble and part of the advantage of the block plan is lost. It is usually found 

that high-order interactions (triple, quadruple, etc.) are not higher in vari¬ 

ance than error, and are of small importance. By carefully looking over 

these combinations some degrees of freedom of probable small importance 

may be selected to sacrifice by “confounding.” Thus the total number of 

plots needed, and block size, is reduced, and the important comparisons are 

saved. 

A simple illustration will be shown using the classic N, P, K fertilizer test, 

with each element at two levels (table 11). Coefficients for main effects are 

of course derived by writing —1 for the low level, +1 for the high. For in¬ 

teraction, they are products of two corresponding coefficients; for example, 

Table 11. Single treatment degrees of freedom, 2X2X2 

d.f. N1P1K1 N2PiKi NxP2Ki NiPiK2 N2P2Ki N2PiK2 NiP2K2 n2p2k2 

N effect -1 + 1 -1 -1 +1 +1 -1 +1 
P effect -1 -1 + 1 -1 +1 -1 +1 +1 
K effect -1 -1 -1 -FI -1 +1 +1 +1 
N X P + 1 -1 -1 + 1 +1 -1 -1 +1 
N X K + 1 -1 + 1 -1 -1 +1 -1 +1 

P X K + 1 + 1 -1 -1 -1 -1 +1 +1 
N X P X K -1 + 1 + 1 + 1 -1 -1 -1 +1 
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Table 12. Analysis of 2 X 2 X 2, confounded and unconfounded 

(4 complete replications) 

Unconfounded, Confounded, 
d.f. d.f. 

Blocks 3 

Treatments 7 

Error 21 

Blocks 

Sub blocks within blocks 

Treatments 

Error (residual) 

3 

4 

6 
18 

N X P in the first column is (—1) X (—1) or ( + 1). Coefficients for N X 

P X K are the products of those for N and P X K, or P and N X K, etc. 

To sacrifice the triple interaction, the 8 plots or units of each replication 

block are divided into halves of 4 units each. The N X P X K is estimated 

(table 10) by contrasting 2 groups: (N2P2K2, N2P1K1, N1P2K1 , N1P1K2) 

vs. (N1P1K1, N2P2K1 , N2P1K2, N1P2K2). If in each complete replication 

one of these groups is randomized in one half-block, the other in the other 

half-block; the triple interaction is completely mixed up or confounded with 

‘‘half-blocks within blocks.” If there are real differences between the sub¬ 

blocks, a gain in precision will result from a lower error estimate. Table 12 

shows outline of analysis of variance each way. 

Many confounded designs of this sort have been worked out, some of 

them veiy complex in plan and analysis. They have not been very widely 

used, and apparently are used more in laboratory than in field tests. There 

are numerous examples of factorial experiments in entomology, but not as 

a rule any involving confounding. The example discussed in the introduc¬ 

tion to this work was a 2 X 2 factorial. 

Of late years modified factorials have been developed to estimate opti¬ 

mum combinations of treatments by multiple regression techniques; this is 

the study of “response surfaces.” An extreme application of factorials called 

“fractional replications” has been used, estimating main effects and some 

important interactions using other interactions as an error estimate. This 

seems better adapted to engineering experiments than to biology. 

6. Incomplete block designs 

Study of confounded designs has given rise to a special group of designs 

called by Cochran and Cox (1957) “incomplete block designs,” although 

all confounded plans feature imcomplete blocks in some way. The designs 

we speak of here are adapted to experiments with a large number of treat¬ 

ments, not necessarily nor usually factorial in arrangement. They were 

originally designed to compare large numbers of newly developed crop va¬ 

rieties, keeping blocks small. In the usual analysis the small blocks totals 

are adjusted for treatments, and after analysis the treatment means are in 

turn adjusted for blocks. In many of the designs the blocks of an entire rep- 
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lication can be kept together; and if the blocks within replications do not 
vary significantly, the experiment can be analyzed as a randomized block. 

If the small blocks do vary significantly, the error variance will be lowered 
as compared with the randomized block analysis. 

Adjustments of the sort mentioned can be made (or attempted) in ordi¬ 
nary experiments which have become mixed up, but this analysis is a mis¬ 
erable business. With the planned incomplete block designs, a number of 
special short-cut methods make analysis smoother. These methods will not 
work for all numbers of treatments, and the plan must be carefully worked 
out and adhered to. These designs have more risks of failure than simple 
designs, and their use will hardly pay unless the number of experimental 
treatments exceeds 15. With large numbers of treatments they offer a chance 
of gain. Cochran and Cox (1957) and Fisher and Yates (1963) list a great 
many such plans and their analyses in detail. With large numbers of treat¬ 
ments, it is usually possible to add or omit borderline cases to make up a 
desired number. 

One type is called the “balanced incomplete block” plan. Every pair of 
treatments occur together the same number of times. This condition is 
called “balance.” Making up sets reminds one of parlor puzzles, but the 
principal workable combinations have been tabled. After sets are made up, 
treatments are randomized in blocks. This design is sometimes used in labo¬ 
ratory trials, with a day or run constituting the block, as well as in the field. 
In some balanced incomplete block plans, complete replications can be kept 
together; in others they cannot. A very simple example follows, of 6 treat¬ 
ments, a to f, 3 in a block, with 5 replications: abc, abd, ace, adf, aef, bcf, 
bde, bef, cde, cdf. 

The lattices are so called because the groups of sets cross each other. The 
typical lattice has k2 treatments, k in each block. The sets can be made up 
from a k X k Latin square written down on paper. In the simplest case one 
group of sets for the small blocks is made from rows, the other from columns. 
A third group can be made from letters of the Latin square, (the A’s, B’s, 
etc.) to form a triple lattice. Carrying the process further, groups can be 
made from other criteria till all possible pairs are together—a balanced lat¬ 
tice. An orthogonalized Latin square (Fisher and Yates 1963) is useful in 
working out a balanced lattice. In the ordinary simple or triple lattice all 
pairs do not occur together, but analysis is not very difficult. In lattices, 
after the sets are made up, the treatments are randomized in each small 
block, and the blocks in the replications. Replications can be kept together. 
Number of treatments is usually a perfect square, though rectangular lat¬ 
tices are sometimes used. 

In lattice squares, the field plots are laid out in actual rows and columns 
in the field. The small blocks constitute rows or columns, or sometimes rows 
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and columns. Balance is achieved, complete replications are kept together, 

and directional variation is removed as in the Latin square. Lattice squares 

can be made up from orthogonalized squares, but the principal plans are 

ready made in Cochran and Cox’s text (1957). The 6X6 and 10 X 10 will 

not work for lattice squares or balanced lattices. 

There are numerous variants of these and other incomplete block designs 

described by Cochran and Cox and other writers (more are being added 

each year), but these three seem the most likely to be widely useful. Some 

of them have been used in entomological field plot trials with some gain in 

accuracy (Wadley 1945 and 1946). A couple of examples of analysis of such 

experiments are given in Chapter 4. 

7. Literature cited 

Years ago, long lists of references would have been needed in such a dis¬ 

cussion as this, but the appearance of Cochran and Cox’s textbook (1950, 
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references to original literature. Several good texts on experimental design 
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CHAPTER 4 

Practical Examples 

This chapter consists of a series of practical problems which have actually 

arisen, worked out in detail from start to finish. It is hoped that (with 

previous examples) they will illustrate a variety of situations and will help 

in approaching new problems. 

1. Binomial distribution and mortality in successive samples 

A problem occurred in work with Japanese beetle larvae in which 40 

groups of 5 insects each were treated by a certain method. Results were 

as follows: 

Sets with all 5 killed 

“ 4 killed 1 alive 

8 
10 

9 

7 

5 

1 “ all 5 surviving 

The total mortality was 126 out of 200 or 63 percent. What would be the 

expectancy of survival distribution with only random variation among a 

uniform lot of insects? If the population is uniform with 63 percent sus¬ 

ceptible, the only reason for variation is that more susceptible insects will 

be drawn in some samples of 5 than in others. This corresponds to the 

variation observed in shaking pennies and counting heads, and is the lowest 

variation we can expect. The binomial (p + q)n is here (0.63 + 0.37)5. 

Expanding, we write (0.63)5 + 5(0.63)4(0.37) -f 10(0.63)3(0.37)2 + 

10(0.63)2(0.37)3 + 5(0.63) (0.37)4 + (0.37)5. The first term gives the ex¬ 

pectation of proportion all dead, no survivors; the second term, the propor¬ 

tion with 4 dead and 1 alive; etc. Calculation gives these terms as 0.099, 

0.291, 0.342, 0.201, 0.059, 0.007 respectively; they total 0.999, or about 1, 

as they should. Multiplying each by 40, the number of sets; we get 4.0, 

11.6, 13.7, 8.0, 2.4, and 0.3 as the average number out of 40 expected in 

each class. 

Lastly we may test by chi-square whether our actual distribution could 

04 
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Table 1 

Number 
dead 

Frequency 
observed 

(O) 

Frequency 
calculated 

(C) 
O - C (O - C)2 (O - C)2/C 

5 8 4.0 +4.0 16.00 4.00 

4 10 11.6 -1.6 2.56 0.22 

3 9 13.7 -4.7 22.09 1.61 

2 7 8.0 -1.0 1.00 0.12 

1 

0 

5 
1 

2.4) 

0.3/ 
+3.3 10.89 4.03 

Sum 40 40.0 0.0 — 9.98 

Table 2 

P F Fp P2 Fp2 

100 8 800 10,000 80,000 

80 10 800 6,400 64,000 

60 9 540 3,600 32,400 

40 7 280 1,600 11,200 

20 5 100 400 2,000 

0 1 0 0 0 

Total 40 2520 — 189,600 

be derived by random sampling from a population with the distribution 

given (table 1). 

Chi-square is 9.98; there are 5 final classes, and two degrees of freedom 

are lost, for p and for total number. A value of 9.98 with 3 d.f. is significant, 

but not highly so; the 5 percent point is 7.82. We might possibly secure a 

distribution like this from a uniform population of 63 percent susceptibility, 

but the probability of doing so is not very great. It is more likely that there 

were some differences among the assemblage of grubs sampled, and thus 

differences appeared among the sets greater than could be explained by 

random sampling. 

This could be treated by computing variance among the 40 samples 

and comparing this variance to the theoretical variance. With percentage 

counts this theoretical variance may be expressed as pq/n; here it is (63 X 

37)/5, or 466, if stated in percentage form. The standard deviation cor¬ 

responding is -s/466 or about 21.6. We have 8 cases with all 5 dead (100 

percent mortality), 10 cases with 4 dead or 80 percent, etc. (table 2). 

Sum of squares of deviations is 189,600 — (2520)2/40, or 30,840. Variance 

is 30,840/39 or 791. This is significant as compared to 466 in the “F” test 

with 39 and oo degrees of freedom. 
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2. Meaning of zero secured in sampling proportions 

Suppose a group of 80 insects gives zero survival when treated with an 

insecticide. How high a real survival might conceivably be present in the 

population? To test the possibility of 2 percent, the binomial is (0.98 + 

0.02)80, and only the first term need be calculated. This is (0.98)80, and is 

the expected proportion of times when a sample of 80 from a population, 

of which 2 percent are resistant, would give no survival. It can be solved 

by logarithms; the answer will be the antilogarithm of [80 X log (0.98)]. 

It comes out to be 0.199 or nearly 20 percent. Of samples of 80 from a 

population 2 percent resistant, about one-fifth will have no survivors. 

Hence a single sample with 100 percent mortality is not strong evidence 

against average survival as high as 2 percent. 

Let us try 5 percent. The term (0.95)80 is calculated as 0.016. Less than 

2 percent of samples of 80 from a population 5 percent resistant would be 

expected to give zero survival. Hence getting a complete kill among 80 is 

pretty good evidence against average survival as high as 5 percent. 

The meaning which can be ascribed to zero in a limited sample may thus 

be worked out by trial and error. However, a general statement may be 

made that with a real survival of 3 individuals or less, zero may often occur 

in a single sample. With a real survival of 4 or more, zero is unusual. This 

will hold for samples of various sizes and varying percentage levels. It is 

associated with the similarity of the binomial and Poisson series at low 

percentage values. 

The problem may be looked at another way in planning experiments. 

Numbers may be provided which will give zero survival, if secured, a 

definite meaning. With only 30 insects in a test, for example, we will oc¬ 

casionally expect a complete kill, when the real population value is 3 

survivors or 10 percent. Hence with only 30, zero survival will be fairly 

good evidence against over 10 percent survival, but will not be strong evi¬ 

dence against survival as high as 10 percent. With 300 insects, zero survival 

by the same standard will be evidence against a true survival above 1 per¬ 

cent. Chitwood and Blanton (1941) have applied this relation to the problem 

of numbers necessary in tests. 

In making such applications it should be remembered that expected 

distributions will apply onty when all individuals are strictly from the same 

population. We might try 300 insects in a single sample, and from zero sur¬ 

vival we might conclude that true survival was 1 percent or less in the 

population. That would indeed be true of the exact population furnishing 

the sample, but not necessarily for all insects of the species. On repeating 

the test the next week, we might run into a population of somewhat greater 

resistance. For broad conclusions about a problem it is necessary to have 
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replicated experiments with repeated sampling, exposing experimental 

treatments to the kind of variation they will face in practice. 

Tests of the kind outlined will be useful in figuring the minimum numbers 

that could give a satisfactory answer. 

3. Poisson series; worms per 100 apples 

If an insect population is distributed fully at random, with equal and 

constant probabilities for each unit, numbers per unit will be in a Poisson 

distribution. 

One hundred apples sampled from a large population showed worm 

populations as in table 3. The Poisson frequency series is calculated as 

follows: for 0, e~x; for 1, xe~x; for 2, x2e~x/2, etc. In general it is xe~x/X\; 
where X is the number per unit, X! is factorial X, and x is the mean. The 

expression e~x is equal to 1/e*; “e” being about 2.72, the base of natural 

logarithms. The solutions are proportions or fractions of the total. 

In our problem, x = 0.31; ex is computed as 2.72° -31, the antilogarithm 

of (0.31 X log 2.72); this is the antilogarithm of (0.31 X 0.4343) or of 

(0.1346), which is about 1.363. This gives ex as 1.363; e~x would be 1/1.363 

or 0.734. We expect a zero in 0.734 or 73.4 percent of the cases if the ma¬ 

terial shows a true Poisson distribution. Multiplying 0.734 by the total 

n(lOO) we get the expected number or frequency as 73.4 compared to the 

actual number of 81. 

The remaining frequencies can be readily calculated from the zero fre¬ 

quency. The expected proportion of apples with one worm is {xe~x)/\, or 

0.31 X 0.734. The expected proportion of twos is (Pe~x)/(I X 2); of threes, 

(x?e~x) /(1 X 2 X 3); etc. So each term can be gotten from the preceding 

one by multiplying the numerator by x and the denominator by A/ the 

number of which the frequency is sought. When the proportion is secured, 

Table 3 

No. worms (X) No. apples (F) FX 

0 81 0 
1 12 12 

2 4 8 

3 2 6 
4 0 0 
5 1 5 

100 31 

S(X) = 31 

x = S(X)/n = 31/100 = 0.31 
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it may be multiplied by the total number of apples to turn it to an expected 

frequency (table 4). 

The distribution actually found may be compared with the Poisson 

expectation for this mean and total by use of chi-square (table 5). Enough 

‘dumping” of higher classes is carried out to give an expectation well over 

1 in the smallest class. 

Chi-square is S[(0 — C)2/C] or 8.37. With the “lumping” used, we have 

3 classes remaining. Two degrees of freedom are lost, because the fitted 

distribution must agree with the actual in mean and in total number. This 

leaves 1 d.f. A chi-square of 8.37 with 1 d.f. is highly significant, well beyond 

the 1 percent point (see table in Chapter 1). This tells us that the distribu¬ 

tion of worms we got, in the sample of 100 apples, could hardby have been 

sampled from material in the Poisson distribution with a mean of 0.31 

worm per apple. The inference is that the population is not Poisson in 

distribution; probabilities are not constant for all apples. 

The difference is seen to be in the existence of more zeros and more high 

frequencies in the actual population than the Poisson (pure random distribu¬ 

tion) would give. This is typical of insect population counts. A simple way 

to compare an actual distribution with the Poisson is to calculate the 

variance of the actual distribution. It may be compared with the expected 

Poisson variance, which equals the mean. This is done using the “F” test 

with (n — 1) degrees of freedom for the actual variance, and an infinite 

number for the Poisson variance. In the example given, S(X2) is (81 X 0) + 

(12 X l2) + (4 X 22) + (2 X 32) + (1 X 52), or 71; [S(X)f/n = (31)2/100 

or 9.61. S(x2) is 71 — 9.61 or 61.39; V = 61.39/99 or 0.62. The F calcu¬ 

lated is 0.62/0.31 or 2.00, as the mean is 0.31. This F is highly significant 

with 99 and oo degrees of freedom. Chi-square can be adapted to this 

same test of homogeneity as noted by Snedecor (1956). 

/. Theoretical minimum Poisson variance as a tentative substitute for computed 

sampling variance in a population estimate 

To compute sampling variance it is necessary to have some sort of re¬ 

peated sampling from the same material. In estimating insect population 

Table 4 

No. worms 
X Numerator e ■X-X 

X 
Denominator 

X! Proportion 
Frequency 

(100 X 
Proportion) 

1 0.734 X 0.31 = 0.2275 1 0.2275 22.8- 

2 0.734 X (0.31)2 = 0.0705 1 X 2 0.0352 3.5 

3 0.734 X (0.31)3 = 0.0219 1 X 2 X 3 0.0036 0.4- 

4 

above 4 

0.734 X (0.31)4 = 0.0068 1 X 2 X 3X4 practically 0 

practically 0 

0.0+ 
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Table 5 

Frequency of apples 

Worms per apple 
Observed 

(O) 
Calculated 

(C) 

o - C (O - C)2 (O - C)2/C 

0 81 73.4 +7.6 57.76 0.79 
1 12 22.8 -10.8 116.64 5.12 

2 & up 7 3.9 +3.1 9.61 2.46 

Total 100 100.1 — — 8.37 

for an area, repeated composite samples, all from the same material, 

furnish an excellent basis for computing variance. Single sample units may 

be used if selected by a random or restricted random plan (Chapter 2). 

However, in some cases we have only a single composite sample, not planned 

with the idea of computing sampling error, and a tentative approximation 

may help. 

Cotton gin trash inspections for the presence of pink bollworm larvae 

were examined in several Texas counties. Inspection results in one year 

are shown in table 6. 

In thinking of sampling error we think of the reproducibility of the sam¬ 

ple if taken repeatedly from the same material. Each of these samples was 

taken only once. If successive thoroughly distributed samples were taken 

their totals would tend to fall in something like the Poisson series. The 

variance in this series is equal to the mean. In County B, for example, a 

series of samples of 1103 bushels each would be expected to have a mean 

somewhere near 6 larvae per sample, a variance in the series near 6, and a 

standard deviation somewhere near \/6 or about 2.5. 

If we state the number of larvae as 6 =t 2.5, we can carry through the 

calculation of larvae per bushel as about 0.005 =t 0.002 for County B. 

Treated in this way the other density estimates are stated as 0.781 =fc 

0.043 for A, 0.004 ± 0.002 for C, and 0.001 d= 0.0004 for D. The significance 

of the difference of A from all the others is plain; B and C are substantially 

equal. It seems likely that the difference of D from B and C may be due 

only to sampling error. 

County A in successive years gave results as in table 7. 

Using the same procedure, there is no doubt of a real difference between 

year 1 and 2, also between 1 and 3. No difference can be detected between 

2 and 3. 

This procedure should not be substituted for computed sampling error 

when the latter can be provided, but will often give a useful tentative idea 

when computed sampling error is not available. It may be added that the 

ability to compute sampling error depends on planning of the sampling. 
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Table 6 

County 
Trash inspected 

(bushels) 
Larvae found 

(number) 
Larvae 

per bushel 

A 415 324 0.781 
B 1103 6 0.005 

C 1161 5 0.004 

D 5403 5 0.001 

Table 7 

Year 
Bushels 

examined 
Larvae 
found 

Larvae 
per bushel 

1 415 324 0.781 
2 1109 5235 4.720 

3 928 4408 4.750 

5. The Poisson series in a problem of parasite distribution 

A problem often discussed in insect ecology is the degree of selectiveness 

possessed by an adult parasite. Can it avoid hosts already attacked, thus 

preventing overlapping and waste of eggs? Some evidence was secured by a 

forest insect worker studying an injurious caterpillar attacked by a fly 

parasite. The egg-shells of the parasite could be found on the caterpillar’s 

skin, thus giving a record of attempts to parasitize each host. The record 

was not perfect, as shown by an occasional parasitized host without egg¬ 

shells, but was evidently fairly accurate. It may be examined for what it 

can show. 

If there is perfect discrimination on the part of the parasite adult, no 

host will receive two eggs as long as any have none. If there is no special 

discrimination, all hosts having an equal probability of being attacked, the 

distribution of eggs will be close to the Poisson series. If some larvae have 

higher probability of attack than others, there will be more overlapping 

than the Poisson series would indicate. This last condition is what we usually 

meet in insect population sampling in the field. 

The number of egg-shells on host larvae are given in table 8. The total 

is 236 eggs on 555 larvae, or a mean (x) of 0.425. The proportion having- 

zero in a Poisson series would be estimated as e x, which is (2.718)-0-425, 

or 1 /(2.718)0*425. This can be solved logarithmically as 1/antilog (0.4343 X 

0.425), which is 0.6536. The expected number of larvae with zero is the 

proportion 0.6536 times the total number 555, or 362.7. 

The proportion having one egg is estimated as e~xx, or 0.425 X 0.6536, 

which is 0.2778. The expected number with one is 555 X 0.2778, or 154.2, 
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In the same way the proportions with two (e~x(x)2/2), with three 

(e~%r)3/3!), and so on, are calculated. Multiplication of proportions by the 

total number gives the expected number (table 9). Lumping the small 

expectancies, 4 classes result. Chi-square is calculated with two degrees of 

freedom, and is quite significant. 

There is a tendency to more zeros (omissions) and more high values 

(duplications) than pure random distribution would give. The parasite is 

apparently not able to discriminate much, and its egg-distribution is a 

little worse than a random one. 

6. Meaning of zero in population samples 

If we can define the level of a population which may be regarded as 

unimportant, we can plan sampling so that it will be likely to detect any 

important population, as stated in a previous chapter. Well-distributed 

sampling is not likely to give a zero where the true value is 5. If populations 

above 0.01 larva per bushel (see example 4) must be detected without 

much chance of failure, 500 bushels should be taken. If this number gives 

zero, the level is probably below 0.01 per bushel. To be reasonably sure of 

detecting infestations as low as 0.001 per bushel, 5,000 bushels would be 

needed. 

Table 8 

Number of egg-shells Number of host larvae 

0 390 

1 120 
2 29 

3 9 
4 4 

5 3 

Table 9 

Number of eggs 
Number of host larvae 

Observed Calculated 

0 390 362.7 

1 120 154.2 

2 29 32.8 

3 9] 4.6] 
4 4H6 0.5 

5 and up 3j O.lj 
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7. Negative binomial of Fisher fitted to wormy-apple series 

This distribution is described as (q — p)~k where p and k are computed 

from mean and variance (x and V), and q = 1 + p. In this series (example 

3) x = 0.31; V = 0.62; p = (V - x)/x = (0.62 - 0.31)/0.31 - 1.000; 

q = 2.000; k = (x)2/(V — x) = 0.0961/0.31 = 0.310. The probability of 

each number, Px , is computed as q~k [(& + X — 1) \/X\(k — 1)!] (p/q)x. 

For X of zero, since 0! = 1, this whole expression cancels out to q~k, or 

1 /qk, which is 1/(2.000)°-31. The expression (2.000)° 31 = antilog of 0.31 X 

log 2.000 or of 0.301 X 0.31, which is antilog 0.09331, or 1.24. 1/(2.000)° 31 
is 1/1.24 or 0.806. 

For Px when X = 1, we have 0.806 X (0.310!)/(1!) (—0.69!) X (1.000/ 

2.000). It is necessary to understand fractional factorials to solve this, but 
it comes out as 0.125. 

For Px when X = 2, the expression is 0.806 X (1.310!)/(2!) ( — 0.69!) X 

(1.000/2.000)2, which equals 0.04. Higher P’s will be small and can be 

lumped; subtracting P0, Pi and P2 from 1.000, we have P for 3 and higher 

as 0.028. 

Assembling our P’s and multiplying by N, we get the estimated fre¬ 

quency (table 10). In computing chi-square, we need 4 final classes to have 

one degree of freedom, since the expected arid actual are made to agree in 

mean, variance, and total number. Chi-square will be small and nonsignifi¬ 

cant for 1 cl.f. 

This distribution seems to show good agreement with the actual numbers 

in such insect populations. 

8. Comparison of mortality at several temperatures 

A large population of tropical insects was given a severe treatment con¬ 

sisting of prolonged exposure to constant low temperatures. The aim was 

to secure 100 percent mortality. Several temperatures from 32° to 35°F. 

were used, and samples withdrawn at several time intervals from 1 to 10 

days. With the earlier withdrawals, some difference in mortality between 

temperatures was seen, with higher mortality at lower temperatures. As 

the point of complete mortality was approached, the difference between 

Table 10 

X (No. of worms) P P X N = F 
expected 

F actual 

0 0.806 80.6 81 

1 0.125 12.5 12 

2 0.041 4.1 4 

3 and up 0.028 2.8 3 
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Table 11 

Temperature 
Total 

number 
insects 

Number 
surviving 

CX) 

Percent 
surviving 

(.P) 
px 

32° 9091 9 0.099 0.891 

0 C
O

 
CO

 5542 11 0.198 2.178 

34h>° 1375 3 0.218 0.654 

35° 5337 9 0.169 1.521 

Total 21,345 32 — 5.244 

Table 12 

Temperature O (actual) C (expected) O - C (O - C)2/C 

32° 9 13.6 -4.6 1.56 
9082 9077.4 +4.6 <0.01 

o
 C
O

 
C

O
 11 8.3 + 2.7 0.88 

5531 5533.7 -2.7 <0.01 

34hT 3 2.1 +0.9 0.39 

1372 1372.9 -0.9 <0.01 

0 lO
 

co
 9 8.0 + 1.0 0.12 

5328 5329.0 -1.0 <0.01 

Chi-square 2.95+ 

temperatures seemed to be equalized. The results at 8 days were tested by 

chi-square using the procedure of Snedecor’s text (1956) discussed in Chap¬ 

ter 1. p is derived as 32/21,345, or 0.150 percent. Chi-square is 

100[S(pX)~ pS(X)] _ 100[(5.244) - (0.150 X 32)] 

p(100 - p) 0.150 x 99.850 

= 44.4/14.98 = 2.96 with 3 d.f. This is not significant and indicates that 
such numbers surviving might all have been secured from the same popu¬ 

lation in several samples. In other words, no difference in results between 

temperature in this range is shown. 

This problem might have been approached in other ways. The expected 

survival numbers might be computed for each temperature, multiplying 

p, that is, 0.150 percent, by the total number used. Chi-square could then 

be calculated as in previous examples, from “O” and “C” numbers. The 
binomial standard deviations (pq/n) could be calculated for the percentages 

and would tend to show that the percentages were not really different. 

Below is shown the same problem using O and C numbers. In calculation 
of this type expected and actual numbers must be used for both surviving 

and dying; though in this particular case, use of numbers dying makes little 
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difference. Expected numbers are calculated from average mortality, 

0.15% (table 12). 

9. Simple variation 

A problem in sampling population density of aquatic insect larvae was 

presented a few years ago. The population was fairly well distributed in the 

area studied but the work of sampling and counting was very heavy. It 

was desired, in preliminary work, to bring the standard error of the mean to 

a level of 10 percent of the mean. 

Fourteen standard dredge counts were made, well distributed through 

the field of inquiry. The readings were used in calculating the variance and 

standard deviation as in Chapter 1 (table 13). The desired standard error 

of 10 percent of the mean would be 10.8. In the equation sj = s/'s/n, we 

may write the desired (10.8) and the s estimated from the sample (26.7), 

and solve for n: 

10.8 = 26.7/y/n\ 10.8 y/n — 26.7; 

y/n = 26.7/10.8 = 2.47; n = 2.472 = 6.10 

An n of 6 will come near the desired and one of 7 should give a lower one. 

Table 13 

Sample number 
Larvae, number 

(X) 
V2 

1 118 13,924 
2 70 4,900 
3 99 9,801 
4 124 15,376 
5 129 16,641 
6 96 9,216 
7 86 7,396 
8 94 8,836 
9 100 10,000 

10 134 17,956 
11 89 7,921 
12 140 19,600 
13 162 26,244 
14 75 5,625 

Total 1516 173,436 

Mean, x = S(X)/n = 1516/14 = 108.3. 
Sum of squares of deviations from mean, S(X*) = S(X2) — [$(X)]2/w = 173,436 — 

164,161 = 9,275. 
Variance, V = S(x*)/(n - 1) = 9,275/13 = 713.46. 
Standard deviation, s = y/v = \/713.46 = 26.7. 
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The application here is not only to the specific sample and to the tests of 

significance which may be made, but to the reproducibility of future samples 

from the material. The estimated standard error gives the scope of expected 

variation of future samples from the true mean. 

Nearly all samples will be expected to fall within about 2 standard errors 

of the true mean. The multiplier is given by the “t” table (Chapter 1); 

for 13 degrees of freedom it is about 2.2. We use 13 d.f. here because our 

estimate of the standard deviation is no better and no worse than that pro¬ 

vided by 14 cases. With 6 units, and an estimated standard error of 10.9, 

we will expect nearly all to fall within about 24 points above or below the 

true mean. These are the so-called confidence limits. 

The expected standard error of a difference of two means of n cases each 

is ^/2Vin or \/2 times the standard error of a mean. The difference 

which should be recognized as significant in such material will be about 

twice the standard error of a difference. Multiplying Sj , or 15.3, by 2.2, we 

get 34, the least difference between two simple means of 6 cases each which 

will be recognized as significant. It will be seen that this is about 3 times 

, or in this case 30 percent of the mean. 

Cochran (see Ladell 1938) has extended this line of thought to give an 

estimate of the largest real difference in the population likely to be missed 

by sampling. It is somewhat larger than the least significant difference. 

10. Compound population sampling 

The simple case of example 9 is much less frequent in population studies 

than more complex cases. In regional surveys, fields are our usual units and 

the sampling within fields is of subunits. The error affecting the area mean 

must be estimated from variation between fields, not by that within fields. 

An example is drawn from grasshopper egg-sampling data on a species 

with rather wide field distribution of eggs. Ten fields with 5 square-foot 

units in each were studied (table 14). 

The variation within fields has an influence on that between fields; s^. 

for the area mean would be smaller if fields were determined perfectly in¬ 

stead of by sampling. In this analysis the calculated includes some 

variation due to within-field variation. Later the estimation of the share 

of variance from within will be used in problems. It often points the way 

to more efficient work, but cannot change the verdict of work already done. 

Increasing the within-field sampling in the case above would make field 

means more stable, and would tend to decrease s-x ; but s^ would still be 

based on between-field variation. 

These statistics are the sort for which the transformation y/n + 0.5 is 
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Table 14 

Field number Subunits, e.g. Number egg-pods Field mean 

1 0 0 1 0 0 0.2 

2 3 0 1 2 1 1.4 

3 2 0 1 0 0 0.6 

4 0 0 0 0 0 0.0 

5 0 1 0 0 0 0.2 

6 0 2 2 0 0 0.8 

7 0 1 0 0 5 1.2 

8 1 1 0 0 0 0.4 

9 2 7 0 0 1 2.0 

10 0 1 0 2 1 0.8 

Table 15 

Source of Degrees of Mean square Mean square 
variation freedom original counts \/n + 0.5 

Between fields 9 1.95 0.2485 

Within fields 40 1.79 0.2122 

F — 1.09 1.17 

usually recommended, so that 0 becomes 0.707, 1 becomes 1.225, etc. 

However, we are estimating only the area mean and its error, and the total 

egg-pods for this purpose number 38. Hence the average should be rather 

stable even without transformation. 

For field totals: 

£(:r2) = l2 + 72 + • • • + 42 - 382/10 = 87.60 

Vx = 87.60/(9 X 10) = 0.9733; sx = 0.986 

t = 2.26. Confidence limits = ±2.26 X 0.986 = 2.23 (9 d.f.) 

mean = 3.80 with C.L. 6.03 and 1.57 

On square-foot basis (-4-5) this is 0.76 with C.L. 1.21 and 0.31. 

Using the square root transformation n + 0.5, this calculation becomes 

1.2252 + 2.7342 + etc. The mean and confidence limits are calculated, 

then squared, and from each is subtracted 0.5, arriving at the original 

scale. When put on a square-foot basis as before, the mean is estimated 

as 0.65 with C.L. 0.28 and 1.14. Hence transformation produced little 

change in conclusions. 

Analysis of variance of individual values turns out as shown in table 15. 

The verdict is similar by the two methods. Note that S.S. between fields 

in original counts (17.52) is }/§ the S.S. found for field sums above (87.60). 
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11. Standard error of a difference 

Elytron length was measured on two groups of beetles believed to be 

specifically distinct, though similar (table 16). It was desired to test the 

difference; and if it were real, to find diagnostic characters. 
The mean difference is 31.04 — 27.30, or 3.74. The pooled variance is 

(61.3036 + 34.475)/(6 + 9) or 6.3852. The variance of the difference is 

6.3852 (1'7 -f } f o) or 1.5510 ; sj is y/1.5510 or 1.25. Since t is 3.74/1.25 
significance is reached with 15 d.f. Although the difference is significant, 

the measurement would not be at all useful for a diagnostic character be¬ 

cause of overlapping of individual values. 

This problem will be discussed further under Section 32. 

12. A simple correlation problem 

Examples of correlation studies have already been touched upon in 

Chapter 1. A correlation analysis was recently employed in a case involving 

the relation of results with a rapid method of estimation to results with a 

more laborious and exact method. Visual examination of cornstalks at¬ 

tacked by corn borer was compared with a method of dissecting stalks and 

counting larvae. The visual estimate is taken as the independent variable, 

since the plan is to estimate population by this easier method, and is 

denominated as X. The dissection count becomes Y. 

Table 16 

Group A Group B 

Individual measurements 26.75 25.25 

(in micrometer units) 28.25 25.50 

28.75 26.00 

31.00 26.50 

33.75 27.00 

34.00 27.00 

34.75 27.00 

28.25 

28.50 

32.00 

Sum, S(X) 217.25 273.00 

n 7 10 

X 31.04 27.30 

S(X2) 6803.8125 7487.3750 

S(X)2/n 6742.5089 7452.9000 

S(x2) 61.3036 34.4750 
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Table 17. Number of larvae 

By visual 
examination Dissected By visual 

examination Dissected 

18 11 9 6 
9 11 7 4 
8 6 2 2 

10 6 15 13 
17 12 7 11 
35 24 9 17 
11 8 2 1 
3 3 7 7 
2 2 5 7 

11 15 8 5 
8 8 5 4 

29 26 5 4 
6 5 

For one series of small plots numbers of larvae are given in table 17. 

Derived statistics are as follows: 

S(X) = 248; x = 9.92 

S(X2) = 3960 

S(x2) - 3960 - (248)2/25 = 1500+ 

S(Y) = 218; y = 8.72 

S(Y2) = 2892 

S(if) = 991 

iS(XF) = 3240 

S(xy) = 3240 - (218 X 248) /25 = +1077 

Plotting as in Chapter 1 shows a rather definite but not exact relation 

with no sign of departure from linearity. The swarm of dots seems to spread 

out more widely with high values. The correlation coefficient, rxy , = 

S(xy)/y/S(x2)S(y2) = + 1077/V991 X 1500 = +0.88. This is highly 
significant with 23 degrees of freedom and shows a real and positive rela¬ 

tion as might be expected. The regression coefficient S(xy) /S(x2), is +1077/ 

1500 or +0.718. The regression equation is Y — y = b{X — x); since 

b = 0.718, y = 8.72, and x = 9.92, we simplify this to Y = +1.60 + 

0.718X. 

The sum of squares of error of estimate of Y is calculated as S(y2) — 
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[S(xtj)Y/S(x2), or 991 — 773, or 218. The variance of estimate is this sum 

divided by n — 2, or 9.48; the standard error of estimate (sy.x) is \/9.48 

or about 3.1. The standard error of the regression coefficient is sv.x/y/S (x2) 

or 3.1/\/l500, which is 0.080. The regression coefficient, +0.718 =fc 0.080, 
therefore is significantly lower than 1. 

In applying the correlation study to the objective of the problem, we 

must watch for (a) bias and (b) inexactness. If the laborious dissection 
and counting is taken as a standard of exactness, it is evident that on 

the average the visual estimate is a little too high; the regression coefficient 

is significantly less than one. The estimate even allowing for this is not 
very exact, with a standard error for individual plot estimates of about 3 

larvae. From the plotted points we may deduce that estimates are more 
accurate with low populations. The scatter tends to be wider at higher 

populations. Thus the material does not quite fulfill the requirements for 
an accurate correlation study. While visual estimates are usually higher 

than the counts, they fall considerably lower in a few cases, showing signs 

of being a little erratic at times. 
The relation is a real one and can be employed in a limited range of 

populations, with due allowance for any bias, and some sacrifice of ac¬ 

curacy. The saving in work may make possible the examination of more 

material to offset the latter’s sacrifice. 

13. A multiple correlation problem 

Data on soil surface temperature were published a few years ago, with 

corresponding air temperatures and depth of snow. A part of the data are 
shown in table 18. The relation of both snow depth and air temperature 

to soil surface temperature may be investigated by multiple correlation 

methods. 

First, sums of squares of deviations and of products of deviations are 

calculated as in the preceding example. However, this time there are 6 

sums as follows: 

S(y2) = 59.0 

S(x!2) = 6922 

S(x22) = 257.3 

S(xiy) = 493.2 

S(x2y) = —59.3 

S(xiXi) = -702.3 
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Table 18 

Temperature 
of soil, °F. (F) 

Temperature 
of air, °F. (Xi) 

Snow depth 
inches (X2) 

28 +8 8 

30 +10 9 

30 +8 10 

30 + 16 9 

30 +22 9 

30 +32 8 

31 +36 7 

31 +38 6 

32 +36 6 

32 + 38 5 

32 +40 3 

32 +47 0 

33 +52 0 

34 +47 0 

33 +40 0 

32 +30 2 

31 +29 1 

30 + 20 2 

28 + 19 2 

28 + 11 2 

31 +23 4 

30 +8 7 

30 -10 6 

29 -13 6 

The estimating equation will be Y = a + biXi + 62X2. The two net 

or partial regression coefficients, or “6’s,” are calculated from the following 

equations: 

S{xi2)bi + S(xiX2)b2 = S(xpj) 

S(xix2)bi + S(x22)b2 = S(x2y) 

Substituting the values calculated, we have 

69226! + ( — 702.362) = +493.2 

-702.36! + 257.362 = -59.3 

Solving, 6i = +0.066, b2 = —0.050 

The “a” is derived from the 6’s and means; a = y — b\Xi — b2x2 , or 

a = 30.71 - [(+0.066) X 24.46] - [(-0.050) X 4.67]. This is 29.3, and 

the equation is Y = 29.3 + O.O66X1 — 0.050X2. 
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For any given values of air temperature and snow depth (Xi and X2) 

the expected Y (soil temperature) may be calculated. If we calculate a 

value for Y for each of the 24 cases in the table, we can compare actual 
and expected Y and calculate a sum of squares of deviations of actual from 
expected. This can be done by a short-cut process, however, by an extension 

of methods of simple correlation. The part of the total S(y2) accounted for 

by the relation is estimated as biS(xiy) + b2S(x2y), or 35.5. Subtracting 

this from S(y2), we get 59.0 — 35.5 = 23.5. This is the part of variation 
not accounted for by the relation. If estimated Y is denoted by ye, the 

standard error of estimate is y/$[(F — ye)2\/ (n — 3), since 3 constants are 
calculated; it is y/23.5/21, or a little over 1.0. 

The multiple correlation coefficient R can easily be estimated. The part 
of variation accounted for by the relation is R2S(y2), and R2 = (part 

accounted for)/S(y2). Here we have R2 = 35.5/59.0 or 0.G02, and R = 

a/0.602 or 0.776. Its significance can be determined by analysis of variance 
using part accounted for (2 d.f.), or by tables in Snedecor’s older editions. 

In this case it is quite significant. 

The simple correlation coefficients can easily be determined from sums 

computed already; ryi = +0.77, ry2 = —0.48, and r12 = —0.53. It will be 

noted that ryl is nearly as high as our multiple correlation coefficient Ry.\2. 

This shows that no great gain was made by taking snow cover into the 

calculations. This may be tested by analysis of variance, testing variance 

accounted for against remaining variance. Sum of squared deviations from 
simple regression of Y on + , can be calculated as in the preceding example 

(table 19). Mean square C is tested by the “F” table against mean square 

B. It is highly significant. Mean square E is tested against D. It is not 

significant. 

Thus it is seen that snow cover in these particular data is not important 

and did not add to accuracy of estimation of soil temperature. 

Snedecor (1956) gives these and also more complex methods, which are 

Table 19 

Source of variation Degrees of 
freedom 

Sum of 
squares Mean square 

A. Total, S(y2) 23 59.0 — 

B. Deviations from simple regression 22 23.9 1.09 
Y on Xi 

C. Simple regression (A — B) 1 35.1 35.10** 
D. Deviations from multiple regression 21 23.5 1.12 
E. Gain from multiple regression 1 0.4 0.40 

(B - D) 

** Highly significant. 
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very workmanlike and lead to all the above determinations. They also 

show the calculation of “betas” or standard partial regression coefficients. 

Many will prefer the more elaborate methods, but the ones shown are 

sufficient. 

It is not difficult to extend these methods to more than two independent 

variables. For three, for instance, equations are 

S(xi2)bi + S(xix2)b2 + S(xiXz)b3 = S(xiy) 

S(x1x2)bi + S(x22)b2 + S(x2x3)b3 = S(x2y) 

S(xixz)bi + S(x2xz)b2 + S(xz2)bz = S(x3y). 

The simple and multiple correlation coefficients have been computed. 

The partial correlation coefficients may also be mentioned. The simple 

correlation coefficient of soil temperature and air temperature disregards 

snow cover. Their partial coefficient gives their estimated correlation if 

snow cover were held constant. Where we have three simple correlation 

coefficients, (■r12, r13, r23), we may estimate the partial correlation of 1 and 

2, for example, by a short-cut formula. It is 

ri2.3 = O12 — rnr23)/\/ (1 — r\z) (1 — r\3) 

For soil and air temperatures, we calculate 

ryi.2 = (+0.77 - ( —0.48)( —0.53))/ 

\/[l - (—0.532)][1 - (-0.482)] = +0.69 

For soil temperature and snow cover, ry2A = —0.13, not significant. 

The apparent negative correlation of snow cover and soil temperature is 

due only to the correlation of soil and air temperatures, in connection with 

the correlation of snow depth and air temperature. The relation of soil and 

air temperatures, on the other hand, is real and definite, with or without 

allowance for effect of snow cover. 

I/. Analysis of variance, simple classification, irregular class numbers 

Insect mortality counts in laboratory experiments on scale insects were 

expressed in percentages. Since percentages were based on adequate and 

similar numbers (about 100), and since practically all were between 10 and 

90 percent, analysis of untransformed figures was used. Results were as 

follows: 

Treatment A: 15%, 12%, 8 %, 21 % 

Treatment B: 27%, 33%, 36%, 41 %, 39% 

total 56, mean 13.5 

total 176, mean 35.2 
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Treatment C: 63%, 54%, 88% total 205, mean 68.3 

Grand total: 437 
Total sum of squares: (15)2 + (12)2 + • • • (88)2 — (437)2/12 

= 21,819 - 15,914 (about) = 5905 

Sum of squares between classes: (56)2/4 + (176)2/5 
+ (205)2/3 - 15,914 

= 784 -j- 6195 + 14,008 - 15,914 = 5073 
Sum of squares within classes = 5905 — 5073 - 832 

Summary 

Degrees of freedom 
Sum of 
squares 

Mean square 

Between classes 2 5073 2536+ 
Within classes 9 (3 + 4 + 2) 832 92+ 

The “F” is 2536/92, highly significant with 2 and 9 degrees of freedom. 

This will serve to illustrate this type of analysis. A chi-square test would 

not be adequate here, since classes are not internally homogenous in 

susceptibility. The analysis above correctly points out significant differences 

between methods. 

15. Analysis of variance, random block experiment, compared 
to “Student’s method” of pair differences 

It has been stated that analysis of variance of cross-classified material is 

an extension of the use of variance of a series of differences. It can be seen 

that if only two things are compared either method could be used, but that 

the pair difference method will not work for more than two at a time. 

In an experiment on cotton insects, two methods of control were used 

side by side in each of 10 fields. The fields can be regarded as blocks, the 

treatment areas as plots. Results are shown in table 20. The variance of 

pair differences can be calculated from the “difference” column. The sum 

of squares of deviations is ( + 59)2 + (+40)2 + • • • + ( + 56)2 — (359)2/10, 

which is 2811. The variance of the series of differences is 2811/9 or 312+; 

the variance of the mean difference is 312/10 or 31.2. The standard error is 

a/31.2 or 5.6. The “t” value is d/sd , 35.9/5.6 or 6.41; compared with a 
value necessary for significance of 2.26 with 9 d.f. 

The analysis of variance proceeds in the standard manner. The total sum 

of squares of deviation is (68)2 + (60)2 + • • • + (28)2 — (885)2/20, or 

9146. The sum between blocks is [(77)2 + (80)2 + • • • + (112)2]/2 — 
(885)2/20, or 1297. The sum between methods is [(622)2 + (263)2]/10 — 
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Table 20 

X? 1^1- XT ^ 
Percent of squares attacked Difference 

Method A Method B Sum (A - B) 

1 68 9 77 +59 

2 60 20 80 +40 

3 76 24 100 +52 

4 45 28 73 + 17 

5 59 28 87 +31 

6 38 18 56 +20 

7 66 32 98 +34 

8 54 48 102 +6 

9 72 28 100 +44 

10 84 28 112 +56 

Total 622 263 885 359 

Average 62.2 26.3 — 35.9 

Table 21 

Source of variation Degrees of 
freedom 

Sum of 
squares Mean square 

Total 19 9146 — 

Blocks 9 1297 144+ 

Methods 1 6444 6444 

Error (Interaction, 9 1405 156+ 

block X method) 

(885)2/20, or 6444. The sum for interaction (error) is derived by subtraction 

as 9146 - 1297 - 6444, or 1405 (table 21). 

“F” for methods is 6444/156, or 41.3, highly significant with 1 and 9 

d.f.; the 5% point (table 10, Chapter 1) is only 5.1 in the table. 

Note that our calculated F is equal to t2; 6.41 squared is equal to 41.3 

within the allowance of small errors caused by rounding. The tabular F is 

also equal to the corresponding t2. If the standard error of a difference is 

determined from the analysis of variance, we have v7156(1/10 -{- 1/10) or 
V31.2 as before. Note that 156 is one-half the 312 of the other method but 

has a smaller divisor. It may also be noted that the division into blocks did 

not add to the precision of the test in this particular experiment, since they 

did not vary more than random error would indicate. 

This shows the relation and equivalence of the two methods. Analysis of 

variance has of course much broader possibilities than the pairing method. 

This and the previous example illustrate the cases of cross-classified and 

unordered (“nested”) classes respectively. Note differences in computation 

of sums of squares. 
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A more complex case is one in which each subclass has more than one de¬ 
termination. Suppose that in the 2X10 test just discussed, each value is 
based on 2 samples (40 in all). Then after calculating the total sum of 

squares of deviations among the 40, each of the 20 cells would be summed. 

A sum of squares for this table would be calculated; (Total for subclass 
l)2/2 + • • • + (total for subclass 20)2/2 — correction factor. Then the total 

S.S. for methods (2 methods with 20 cases each) and for blocks (10 of 4 

cases each) would be calculated. The interaction S.S. is S.S. table — S.S. 

blocks — S.S. methods. 
Then subtracting S.S. table from S.S. total, we have left S.S. deviations 

between items within subclasses. It could be determined independently 

from subclass means, but is easier to get by subtraction. 

The use of these special tables to calculate interaction S.S. will be de¬ 

veloped further in Examples 17 and 18. We have cases where both un¬ 

ordered and cross-classified situations occur in the same complex analysis 

(Cassil, Wadley, and Dean 1943). In the case discussed there, we had both 
plots and trees within plots, interacting with section of the trees (top, mid¬ 

dle, or bottom). The S.S. for trees within plots was calculated by getting S.S. 

for all trees, and subtracting from this S.S. for plots. The interaction is like¬ 

wise handled; S.S. interaction (all trees X sections) — S.S. interaction 

(plots X sections) yields S.S. interaction (trees within plots X sections). 

16. Analysis of variance in a compound classification of plots, 

without restriction to blocks 

The experiment in question was on scale insect populations on fruit 

trees. It was rather exceptional in that it was compound, with several trees 
per plot, and a number of leaf sample records for each tree, and that block 

restrictions were not used. For this reason no interactions can be deter¬ 

mined. We have variance between treatments, between plots within treat¬ 

ments, trees within plots, and leaf-units within trees. This makes the analysis 
an interesting exercise in methods. A more efficient plan was recom¬ 

mended to the experimenters, and in later work single-tree plots arranged in 

blocks were used. 
We will consider 5 treatments, with 4 plots per treatment, 2 trees per 

plot, and a sample of 20 leaves per tree. Counts were mostly of a high level 
not needing transformation for analysis. For brevity, the individual leaf 

records are not given; but only the sums and sums of squares, of population 

counts, for each treatment. There are in all 800 items. The 2 tree totals 
are shown for each plot, followed by their sum in parenthesis, and separated 

from the next plot by a semicolon (table 22). The sum, and the sum of 

squares of all individual leaf records, are shown in the last two columns. 
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The total sum of squares of deviations can be derived from the totals of 
these last two columns, as: 3,611,423 — (33,107)2/800, 0r 2,241,331. This 
is in fact the sum of squares of the 800 leaf records, and includes the other 
sources of variation. 

Next comes the sum of squares for treatments: [(3950)2 + (4033)2 + 
• • • + (12,391)2]/160 — (33,107)2/800, or 293,819. (There are of course 160 
units in each treatment, giving the divisor.) The sum of squares for all 20 
plots is: [(834)2 + (705)2 + • • • + (2221)2]/40 - (33,107)2/800, or 588,413. 
This, however, includes the sum of squares for treatments. The sum for 
plots within treatments is 588,413 — 293,819, or 294,594. 

The sum of squares for all 40 trees is [(553)2 + (281)2 + • • • + (892)2]/ 
20 — (33,107)2/800 = 686,659. This includes sums for plots and treat¬ 
ments, so the sum for trees within plots is 686,659 — 294,594 — 293,819, 
or 98,246. The sum of squares for leaf units within trees will be given by 
subtracting the 3 sums already derived, from the total. It comes out as 
1,554,672. 

The summary is in table 23. 
The variance for plots within treatments is the appropriate error for 

treatments, since it includes all the uncontrolled or sampling variation. 
A treatment based on plot units must have an error in plot units. Variation 
of trees may be regarded as error for plots, and leaves as error for trees. 
The latter variances are interesting and useful in study of technique, but are 
not adequate as error for treatments. A test will show plots as significantly 
higher in variance than trees, and tree variance as significantly higher than 
leaf variance. 

Table 22 

Treatment Totals for 2 trees in each of 4 plots S(X) S(X*) 

“O” 553, 281 (834); 404, 301 (705); 3,956 212,652 

609, 756 (1365); 215, 837 (1052) 

“L” 510, 898 (1408); 482, 193 (675); 4,633 374,083 

1544, 746 (2290); 106, 154 (260) 

“U” 567, 521 (1088); 262, 82 (344); 5,053 334,753 

628, 701 (1329); 1258, 1034 (2292) 

“W” 1493, 1326 (2819); 557, 354 (911); 7,074 596,176 

389, 265 (654); 1545, 1145 (2690) 

l i'p J) 1241, 1504 (2745); 2971, 1645 (4616); 12,391 2,093,759 

1175, 1634 (2809); 1329, 892 (2221) 

Total 33,107 3,611,423 
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Table 23 

Source of variation 
Degrees of 
freedom 

Sum 
of squares 

Mean 
square 

Total 799 2,241,331 — 

Treatments 4 293,819 73,455* 
Plots within treatments 15 294,594 19,640 
Trees within plots 20 98,246 4,912 
Leaves within trees 760 1,554,672 2,046 

* Significant, F = 73,455/19,640. 

17. Analysis of variance, 4 criteria of classification 

An experiment in insect winter survival was run during 4 years, with 3 

depths of burial, 3 moisture conditions, and 2 dates of burial. Only one 

unit was provided for each combination. The uncontrolled variation meas¬ 

ured was that due to years, and interaction with years furnished error 

variances for several questions. These interactions included whatever 

sampling variation occurred in insect populations, site selection, etc. 

The figures were in percentage survival. Each percentage was based on 

several hundred insects. Since percentages were often low (0 to 3 %) and 

occasionally as high as 15 or 20%, the angle transformation was used. The 

72 percentages of survival when transformed are shown in table 24. First 

the sum of squares of deviations among all 72 is computed as S(X2) — 

[S(X)]2N or 17,511.46 - (883.8)772 which is 17,511.46 - 10,848.64 or 

6,662.82. Next 6 two-way groupings must be arranged for the 6 two-way 

interactions: Date-number (of irrigations), date-depth, date-year, num¬ 

ber-depth, number-year, depth-year. Each entry in table 25 is the sum of 

12 items. For December with 2 winter irrigations, for example, we add the 

12 items for this combination in 4 years and at 3 depths: 5.3 + 14.1 + 

• • • 9.4 + • • • 4.4 -f- • • • + 4.0, giving us 74.2. 

Analysis of the table is as follows: 

Total S.S.: 

[(258.1)2 + (114.9)2 + ••• + (106.0)2]/12 - 10,848.64 = 2107.72 

S.S. between dates: 

(447.2)2/36 + (436.6)2/36 - 10,848.64 = 1.56 

S.S. between numbers: 

(469.6)2/24 + (234.0)2/24 + (180.2)2/24 - 10,848.64 = 1974.37 

S.S. interaction, date X number: 2107.72 — 1.56 — 1974.37 = 131.79 
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Table 24 

Burial 
date 

Winter 
irrigations 
(number) 

Depth 
(inches) 1936 1937 1938 1939 

Dec. 2 2 5.3 14.1 18.0 0.0 

4 9.4 4.1 8.1 2.3 
6 4.4 1.5 3.0 4.0 

1 2 14.6 22.1 16.6 7.3 
4 3.3 16.1 13.4 5.2 

6 2.9 4.6 6.5 2.3 

0 2 24.9 40.7 36.2 31.7 

4 23.9 26.9 19.2 10.9 

6 13.9 16.2 6.7 6.9 

Jan. 2 2 10.4 25.2 17.2 9.9 

4 4.8 9.0 12.8 0.0 

6 5.8 4.8 0.0 6.1 

1 2 14.1 27.4 28.4 16.2 

4 8.6 6.6 6.5 5.2 

6 3.8 0.0 0.0 2.3 

0 2 23.8 36.9 22.2 26.7 
4 18.9 13.1 12.1 10.1 

6 11.5 14.0 7.8 14.4 

Table 25. Date-number 

Date 0 l 2 Total 

Dec. 258.1 114.9 74. .2 447.2 

Jan. 211.5 119.1 106. 0 436.6 

Total 469.6 234.0 180. .2 883.8 

Note that 12 items make up each cell total, 36 make up each date total 

and 24 each number total, and that these are used as denominators. This 

keeps the analysis in terms of original units, and we use the same correction 

factor throughout. 

We then proceed to arrange the other five groupings (table 26). There is 

a good deal of overlapping and opportunity for checking. For the date- 

depth grouping 12 items are added for each cell, for all years, and numbers 

of winter irrigations. 

To get the 4 triple interactions it is necessary to have 4 tables; each lump¬ 

ing one factor and classified according to the other three. After getting the 



Table 26 

DATE-DEPTH 

Date 2 inches 4 inches 6 inches Total 

Dec. 231.5 142.8 72.9 447.2 
Jan. 258.4 107.7 70.5 436.6 

Total 489.9 250.5 143.4 883.8 

Total S.S. - 2704.58 
S.S., dates 1.56 
S.S., depths = 2622.85 
S.S. interaction, date X depth, 2704.58 -- 1.56 - 2622.85 - 80.17 

NUMBER-YEAR 

Number 1936 1937 1938 1939 Total 

0 116.9 147.8 104.2 100.7 469.6 
1 47.3 76.8 71.4 38.5 234.0 
2 40.1 58.7 59.1 22.3 180.2 

Total 204.3 283.3 234.7 161.5 883.8 

Total S.S. = 2529.38 
S.S., numbers = 1974.37 
S.S., years = 438.23 
S.S. interaction, number X year (by subtraction) = 116.78 

DEPTH-YEAR 

Inches 1936 1937 1938 1939 Total 

2 93.1 166.4 138.6 91.8 489.9 
4 68.9 75.8 72.1 33.7 250.5 
6 42.3 41.1 24.0 36.0 143.4 

Total 204.3 283.3 234.7 161.5 883.8 

Total S.S. = 3513.23 
S.S., years = 438.23 
S.S., depths - 2622.85 
S.S. interaction, depth X year = 452.15 

DATE-YEAR 

Date 1936 1937 1938 1939 Total 

Dec. 102.6 146.3 127.7 70.6 447.2 
Jan. 101.7 137.0 107.0 90.9 436.6 

Total 204.3 283.3 234.7 161.5 883.8 

Total S.S. = 489.78 
S.S., years = 438.23 
S.S., dates = 1.56 
S.S. interaction, date X year = 49.99 

89 
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Table 26—Continued 

NUMBER-DEPTH 

Number 2 inches 4 inches 6 inches Total 

0 243.1 135.1 91.4 469.6 
1 146.7 64.9 22.4 234.0 
2 100.1 50.5 29.6 180.2 

Total 489.9 250.5 143.4 883.8 

Total S.S. - 4824.44 
S.S., numbers = 1974.37 
S.S., depths = 2622.85 
S.S. interaction, number X depth = 227.22 

Table 27. Date-number-year 

Date Number 1936 1937 1938 1939 Total 

Dec. 0 62.7 83.8 62.1 49.5 258.1 
1 20.8 42.8 36.5 14.8 114.9 
2 19.1 19.7 29.1 6.3 74.2 

Jan. 0 54.2 64.0 42.1 51.2 211.5 
1 26.5 34.0 34.9 23.7 119.1 
2 21.0 39.0 30.0 16.0 106.0 

Total 204.3 283.3 234.7 161.5 883.8 

sum of squares among the items of the table, the sums of squares for the 

main effects and two-way interactions involved are deducted. The remainder 

is the triple interaction. 

In table 27, depths are added for each subclass, so that 3 items are added 

to give each cell total. In the first item (Dec. burial, 1936, no winter irriga¬ 

tion) the addition is 24.9 + 23.9 + 13.9 = 62.7. Sum of squares for the 

table is [(62.7)2 + (83.8)2 + ••• + (16.0)2]/3 - 10,848.64; or 2784.36. 

Subtract from this the sums of squares already secured for main effects, 

date, number, year; and for interactions date X number, date X year, 

number X year. The remainder is for triple interaction, date X number X 

year; 2784.36 - 1.56 - 1974.37 - 438.23 - 131.79 - 49.99 - 116.78 = 

71.64. (Note that the bottom totals check with others for years in the first 

series of tables; the side totals with the cells of one of the two-way tables.) 

Tables for date-year-depth, number-year-depth, and date-depth-number 

may be arranged in the same way (table 28). Lastly, the sum of squares for 

quadruple interaction is secured by subtracting from the total sum of 

squares of deviations first determined (6662.82) the 14 sums of squares for 
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Table 28 

DATE-DEPTH-YEAR 

Date 
Depth 
(inches) 

1936 1937 1938 1939 

Dec. 2 44.8 76.9 70.8 39.0 
4 36.6 47.1 40.7 18.4 
6 21.2 22.3 16.2 13.2 

Jan. 2 48.3 89.5 67.8 52.8 
4 32.3 28.7 31.4 15.3 
6 21.1 18.8 7.8 22.8 

Total S.S . = 3679.66 and S.S. for triple interaction = 34.71 
in the same way as before. 

NUMBER-DEPTH-YEAR 

Number 
Depth 

(inches) 
1936 1937 1938 1939 

0 2 48.7 77.6 58.4 58.4 
4 42.8 40.0 31.3 21.0 
6 25.4 30.2 14.5 21.3 

1 2 28.7 49.5 45.0 23.5 
4 11.9 22.7 19.9 10.4 
6 6.7 4.6 6.5 4.6 

2 2 15.7 39.3 35.2 9.9 
4 14.2 13.1 20.9 2.3 
6 10.2 6.3 3.0 10.1 

Total S.S. = 5965.40; triple interaction S.S . - 133.80 

DATE-NUMBER-DEPTH 

Date Number 2 inches 4 inches 6 inches 

Dec. 0 133.5 80.9 43.7 
1 60.6 38.0 16.3 
2 37.4 23.9 12.9 

Jan. 0 109.6 54.2 47.7 
1 86.1 26.9 6.1 
2 62.7 26.6 16.7 

Total S.S. = 5179.37; triple interaction S.S. = 141.41 

4 main effects, 6 two-way interactions, 4 triple interactions. It comes out 

as 186.15. 

These calculations are summed up in table 29. (Pooled triple and quadru¬ 

ple interactions, mean square 14.2, 40 d.f.) It is believed that this summary 

shows the tendencies well, and in these extreme percentages we may have 
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Table 29 

Source of variation Degrees of 
freedom 

Sum of 
squares Mean square 

Between dates 1 1.56 1.56 
Years 3 438.23 146.07** 
Depths 2 2622.85 311.42** 
Numbers 2 1974.37 987.18** 

Date X year 3 49.99 16.66 
Date X depth 2 80.17 40.08* 
Date X number 2 131.79 65.90* 
Year X depth 6 452.15 75.36* 
Year X number 6 116.78 19.46 
Depth X number 4 227.22 56.81* 

Date X year X depth 6 34.71 5.78 
Date X number X depth 4 141.41 35.37 
Date X year X number 6 71.64 11.94 
Depth X year X number 12 133.80 11.15 

Depth X date X year X 12 186.15 15.51 
number — 

Total 71 6662.82 — 

* Significant. ** Highly significant. 

somewhat more confidence in relations as shown by the transformed func¬ 

tion than by the original figures. 

In evaluating significance, the principle of selecting error terms express¬ 

ing the random variation will apply. Depths, numbers of irrigations, and 

dates are reproducible experimental treatments, while years are nonrepro- 

ducible, and bring in uncontrolled sampling variation. The proper error for 

depths, numbers, and dates respectively is their interaction with years, 

since this expresses the variation we would have to contend with in doing 

the work over; i.e., the error for “depths” is “depth X year,” etc. The proper 

error for years is the variance for triple or quadruple interaction, since every 

other main factor may be reproduced, and two-way interactions involving 

years are with reproducible sources. It is accordingly somewhat easier to 

prove that years are really different, with the other sources of variation 

exactly reproducible, than to say that treatments are really different, when 

they have to be compared in variable years. 

The two-way interactions involving only depth, number, and date are 

referred to the corresponding triple interactions with years as error. Those 

involving years are referred to quadruple interaction. They express dif¬ 

ferential effect. In date X depth, for example, we not only had a strong in- 
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fluence of depth, but depth tended to act in a different way with different 

dates. (Note that date is lower than its error but not significantly so; “F” 

is 16.66/1.56 with only 1 cl.f. for lesser mean square, 3 for greater.) Other 

significant interactions can be similarly interpreted. 

Triple interactions are referred to quadruple interaction as error; none 

proves significant. In short-cut procedure all could be pooled with the 

quadruple as error for two-way interactions. If a triple interaction was 

significant, it would mean that a two-way interaction varied with the level 

of the third factor. 

Standard errors for treatment means will have only a limited value, since 

significant interactions with other treatments occur. A given treatment 

mean will tend to vary if other treatments are shifted, and our evaluation 

of them applies only to the present set-up. However, a standard error and 

confidence limits will be calculated to illustrate the procedure with trans¬ 

formations. 

For 0 irrigation, the mean survival (degrees) is 19.6; 

The variance applying is year X number, 19.46 (6 d.f.); 

The variance of the mean is 19.46/24 for 24 items, or 0.817; 

The standard error is \/0.817 or 0.904; 

t for 6 d.f. is 2.45 (5 % level); 

95% confidence limits are ±2.45 X 0.904, or 2.2; 

or from 21.8 to 17.4. 

Going to Snedecor’s equivalent angle table, we have: 

Degrees % 

mean 19.6 11.3 
upper C.L. 21.8 13.8 
lower C.L. 17.4 8.9 

18. A split plot experiment in insect population 

A South American experiment in cotton insect population is available 

for study. Effect of irrigation water, fertilization, and spacing was studied. 

The criterion was seasonal average of percentage of forms attacked by 

bollworm. The nature of the irrigation treatment made it necessary to have 

large plots, while small plots were sufficient for the other treatments. There 

were 3 levels of water application (Wi , W2, W3); 3 levels of nitrogen ap¬ 

plication (No, Ni, N2) and three of spacing (Si, S2, S3). Since all combina¬ 

tions were represented, this is a factorial experiment; all differential effects 

can be estimated. 

The large-plot treatments (water treatments) were randomized in loca¬ 

tion in the blocks, and the small-plot treatments in the subplots within the 

large plots. These small-plot treatments included all 9 combinations of 
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fertilization and spacing. Field arrangement, however, is not shown in the 

summary table of data below. 

Cochran and Cox (1957) show various short-cuts in analysis of factorials, 

but only the ordinary methods are shown here. Percentages of forms at¬ 

tacked by bollworms, by combinations of treatments in four blocks, are 

given in table 30. 

The total sum of squares of deviations, S(x2) = S(X2) — [$(X)]2/w = 

111,978.05 - (3305.5)2/108 = 10,808.33. 

The large-plot treatment, amount of irrigation water, is summarized by 

blocks in table 31. Each item is of course the sum of 9 original items; each 

water total is the sum of 36, each block total the sum of 27 items. 

The sum of squares for water treatments: [(1072.9)2 + (1031.2)2 + 

(1201.4)2]/36 - (3305.5)2/108 = 437.22. 

In the same manner the sum of squares for blocks is 1106.53. 

Table 30. Bollworm damage 

Treatments Block 1 Block 2 Block 3 Block 4 Total 

No SiWi 16.6 24.4 25.0 15.0 81.0 
No S2Wr 28.8 24.4 43.3 15.5 112.0 
No S3W! 31.6 25.0 26.6 38.3 121.5 
Nr SjWi 25.5 28.8 22.2 22.2 98.7 
Nr S2Wt 43.3 37.7 35.5 18.8 135.3 
Nx S3Wx 36.6 40.0 36.6 28.3 141.5 
N2 SiWi 26.6 21.6 31.0 27.2 106.4 
N2 S2Wi 15.5 27.8 30.0 30.0 103.3 
N2 S3Wi 33.3 65.0 38.3 36.6 173.2 
No SiW2 22.2 17.8 29.4 20.0 89.4 
No S2W2 34.4 20.0 31.0 27.8 113.2 
No S3W2 43.3 41.6 30.0 31.6 146.5 
Ni SrW2 19.4 24.4 22.2 12.7 78.7 
Ni S2W2 28.8 36.6 30.0 18.8 114.2 
Ni S3W2 24.8 45.0 26.6 41.6 138.0 
N2 SiW2 28.8 23.3 21.6 25.0 98.7 
n2 s2w2 24.4 42.2 32.2 12.2 111.0 
n2 s3w2 21.6 35.0 41.6 43.3 141.5 
No SrW3 18.3 35.5 25.0 31.1 109.9 
No S2W3 31.0 53.2 27.7 24.4 136.3 
No S3W3 25.0 40.0 36.6 33.3 134.9 
Ni SiW3 13.3 42.8 27.2 40.6 123.9 
N: S2W3 21.0 53.3 20.0 33.3 127.6 
Nr S3W3 38.3 43.3 15.0 45.0 141.6 
N2 SiW3 18.8 44.4 19.4 32.8 115.4 
n2 S2W3 25.5 35.5 35.6 38.8 135.4 
n2 s3w3 48.3 43.3 31.6 53.2 176.4 

Total 745.0 971.9 791.2 797.4 3305.5 
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Table 31 

Water treatment Block 1 Block 2 Block 3 Block 4 Total 

w, 257.8 294.7 288.5 231.9 1072.9 

w2 247.7 285.9 264.6 233.0 1031.2 

w3 239.5 391.3 238.1 332.5 1201.4 

Total 745.0 971.9 791.2 797.4 3305.5 

Table 32 

N — W 

Wi W2 w3 Total 

No 314.5 349.1 381.1 1044.7 

Nr 375.5 330.9 393.1 1099.5 

n2 382.9 351.2 427.2 1161.3 

Total 1072.9 1031.2 1201.4 3305.5 

s — w 

Wi w2 W3 Total 

Si 286.1 266.8 349.2 902.1 

s2 350.6 338.4 399.3 1088.3 

s3 436.2 426.0 452.9 1315.1 

Total 1072.9 1031.2 1201.4 3305.5 

N — S 

Si S2 S3 Total 

No 280.3 361.5 402.9 1044.7 

Nr 301.3 377.1 421.1 1099.5 

n2 320.5 349.7 491.1 1161.3 

Total 902.1 1088.3 1315.1 3305.5 

The sum of squares for the block-water combinations is [(257.8):2 -T 

(294.7)2 + • • • + (332.5)2]/9 - (3305.5)2/108 = 2767.93. 

The sum of squares for interaction, block X water, is 

2767.93 - 1106.53 - 437.22 - 1224.18. 

This is the large-plot error. 

A special table is arranged for all N-W combinations, S-W combinations, 

and N-S combinations (table 32). From each part of the table may be cal- 
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culated the total sum of squares and the sums for the two main effects; and 

the interaction sum may be secured by subtraction. 

The triple interaction of treatments, N X S X W, is derived by first cal¬ 

culating the sum of squares among all 27 combinations of the treatments. 

Each item will be the sum of 4 blocks. The columns of totals in the table of 

original data may be used. From this sum of squares are deducted the six 

treatment sums included in it: for N, S, W, N X S, N X W, S X W. The 

remainder is the sum for N X S X W. 

The error for the two small-plot treatments (Error B) is a compound of 

the interactions of these treatments with block X water, and their inter¬ 

actions with blocks. There is no object in separating the components, hence 

it may be derived by subtracting the sums already calculated from the 

total. The analysis is summarized in table 33. 

No significant differences at all occur except the influence of spacing on 

bollworm populations. Spacing is highly significant in its influence on boll- 

worm damage. This might be expected; the wider spacings with fewer plant 

units tend to have a higher rate of bollworm attack, since they are attacked 

by about the same population. The damage means are: wide spacing, 36.5 

percent; medium, 30.2; narrow, 25.1. The experiment had a negative value 

in showing that modification of prevailing cultural practices could be made 

with little or no effect. This also applies to yields, not shown here. Some 

economy was thus shown to be feasible. 

Table 33 

Source of variation Degrees of 
freedom 

Sum of 
squares Mean square 

Large plots: 
Between blocks 3 1106.5 368.8 

Water treatments 2 437.2 218.6 

Block X water treat- 6 1224.2 204.0 

ments (Error A) 
Small plots: 

Between nitrogen rates 2 189.1 94.5 

Between spacings 2 2376.6 1188.3** 

Interaction: 
N X S 4 271.2 67.8 

N X W 4 161.9 40.5 

S X w 4 76.2 19.0 

N X S X W 8 284.4 35.6 

Error B 72 4681.1 65.0 

** Highly significant. 
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19. Covariance analysis 

An example may be found in work on sugarcane borer, in which infesta¬ 

tion (percentage count of joints attacked: X) and percentage (measure¬ 

ment: Y) of sucrose were recorded in several experiments at different times 

and places, with the same variety (table 34). Replications in each experi¬ 

ment totaled six. 

Calculation using the whole 36 as a simple series as to correlation and 

regression, gives S(x2) = 6073.59, S(y2) = 88.53, S(xy) = +366.20. The 

variation in infestation may be divided by analysis of variance, into that 

between experiments (sum of squares of deviations = 4632.46) and that 

within experiments (S.S. = 1441.13). The variance for sucrose can be 

similarly divided into 71.73 between tests and 16.80 within tests. The prod¬ 

ucts of deviations can be computed as follows: 

Total: (30.5 X 14.8) + (53.2 X 11.8) + • • • + (23.1 X 10.5) - (832.2 X 

480.7) /36 = +366.20. 

Between tests: 

(239.9 X 85.7) + • • • + (69.5 X 67.4) _ (832.2 X 480.7) 

6 36 

Within tests: ( + 366.20) — (+481.94) = —115.74. 

+481.94. 

The whole may be summarized in table 35. 

The “r” computed in each line as Sxy/\/S(x2)S(y2). It appears that there 

is a pronounced tendency for the high-sucrose experiments to be more 

heavily infested, which gives a significant positive correlation between ex¬ 

periments. Within experiments, with sucrose level rather uniform between 

units, a marked negative correlation shows up. The whole series gives us a 

significant though moderate positive value, which would be quite deceiving 

Table 34 

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6 

X Y X Y V Y X Y X Y Ar Y 

30.5 14.8 39.9 14.6 24.4 15.1 22.9 11.8 20.1 11.4 7.8 12.0 
53.2 11.8 22.0 15.3 28.9 14.0 13.7 12.1 7.5 13.1 10.8 10.6 
39.2 14.8 40.7 15.2 18.4 14.3 18.8 12.5 7.2 13.3 1.8 12.0 
36.8 14.6 33.7 15.5 15.4 15.6 15.8 12.6 13.4 11.9 10.5 11.4 
44.0 14.8 40.3 14.7 15.3 15.5 13.1 12.4 6.8 12.5 15.5 10.9 
36.2 14.9 40.2 15.2 37.7 13.7 13.6 12.8 13.0 12.5 23.1 10.5 

239.9 85.7 216.8 90.5 140.1 88.2 97.9 74.2 68.0 74.7 69.5 67.4 

Grand totals: X, 832.2; Y, 480.7. 
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Table 35 

Source of 
variation 

Degrees of 
freedom S(**) S(xy) W) r d.f. 

for r 

Total 35 6073.59 +366.20 88.53 +0.50 34 
Between exper¬ 

iments 
5 4632.66 +481.94 71.73 +0.84 4 

Within experi¬ 
ments (error) 

30 1441.13 -115.74 16.80 -0.74 29 

Table 36 

Source of 
variation 

Sum of squares of 
errors of estimate 

(S.S.E.E.) 

Degrees of 
freedom Mean square 

Total 66.45 34 — 

Error 7.50 29 0.26 

Difference 58.95 5 11.79 

by itself. The within-experiment or error calculation is the better guide to 

the underlying relation, free of experiment differences. If the difference in 

sucrose between experiments was being critically investigated, we might 

wish to correct for the underlying correlation. This is most accurately done 

by making the “F” test with residual variance, as shown below. Errors of 

estimate are calculated by the short-cut formula, S(y2) — [$(£?/) ]2/&(£2), 

or (1 — r2) •S(y2). Results are shown in table 36. The mean square 11.79 is 

tested against 0.26 as error. Thus differences between experiments are 

shown to be more marked than would appear without allowing for the 

within-experiment correlation. The test may be supplemented by comparing 

adjusted class means of sucrose content, using the formula Y — bx. The 

“6” used is the regression coefficient, S(xy) /S(x2), and is calculated from the 

error classifications; “x” in this case will be the deviation of the class mean 

from the general mean. E.g., general mean x is 832.2/36 or 23.1; in Experi¬ 

ment 1, x = 40.0; deviation, x — x = 40.0 — 23.1 = +16.9; b = —115.74/ 

1441.13 = -0.0803; bx = -0.0803 X 16.9 = -1.4; Y - bx = 14.3 - 

(-1.4) or 15.7. 

Covariance may be analyzed in even more complex experiments by these 

methods. In the randomized block analysis, if two variables had been meas¬ 

ured in each unit, we could separate covariance for varieties, blocks, and 

error. In special adjustments such as the one just above, we use only those 

parts of the analysis which are of special interest. We add “treatment” and 

“error” sums of squares and products, to form a new “total.” “Block” in¬ 

fluences have been evaluated and set aside. 
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20. Covariance analysis, randomized block experiment 

In a nut insect problem, fear was expressed that the varying size of trees 

over the experiment would interfere with recognition of treatment dif¬ 

ferences. The cross-section area of trees was taken for each of the single¬ 

tree plots. There were 5 treatments replicated 10 times in a randomized 

block arrangement. 

In table 37, blocks are indicated by letters A to J, plot yields (F) are the 

upper figures in each cell, cross-section area (X) are the lower figures. 

Correction factors (C.F.) are as follows: 

Cross-section area (X), (4535.3)2/50 = 411,378.92 

Yield (F), (1419.7)2/50 = 40,310.96 

Covariance (XF), (4535.3 X 1419.7)/50; 128,775.31 

Totals for S(x2) = 19,237.87; S(xy) = 3,889.25; S(if) = 8070.69 are 

calculated as in example 19 or as in a simple correlation problem. 

S(x2) for blocks is [(356.02 + (415.7)2 + • • • + (475.6)2]/5 - C.F. = 

5119.20. 

a8(x2) for treatments is similarly computed as 2563.85. 

S(x2) for error (interaction, block X treatment) is 19,237.87 — 5119.20 — 

2563.85 = 11,554.82. 

S(y2) for blocks, treatments, and error is figured in the same way as 

4528.89; 558.17; 2983.63, respectively. 

Table 37 

Treatment A B C D E F G H I J Totals 

1: 

Y 27.1 48.5 55.0 38.4 19.8 25.5 28.1 21.4 40.6 14.4 318.8 
X 74.5 113.0 83.5 113.0 66.9 71.6 66.0 96.2 88.8 133.8 907.3 

2: 

Y 13.0 28.3 52.5 38.3 15.3 47.0 23.3 22.9 13.4 10.9 264.9 
X 41.7 69.7 99.7 88.8 85.6 114.9 92.5 86.7 85.6 69.3 834.5 

3: 
Y 30.5 28.3 54.5 23.7 15.9 10.7 21.0 32.7 42.4 11.5 271.2 

X 73.5 93.0 111.3 71.6 87.2 119.6 121.5 94.1 129.9 98.6 1000.3 

4: 
7 40.6 31.9 65.8 37.4 15.5 25.9 31.7 40.2 18.3 18.9 326.2 

X 88.8 72.1 114.9 88.8 69.3 118.4 100.3 112.4 103.1 104.2 972.3 

5: 
7 29.7 27.0 29.9 30.2 19.0 26.5 17.6 22.1 16.0 20.6 238.6 

X 77.5 67.9 74.5 92.0 86.1 110.7 58.0 92.0 92.5 69.7 820.9 

Total: 

7 140.9 164.0 257.7 168.0 85.5 135.6 121.7 139.3 130.7 76.3 1419.7 

X 356.0 415.7 483.9 454.2 395.1 535.2 438.3 481.4 499.9 475.6 4535.3 
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S(xy) for blocks is [(140.9 X 356.0) + • • • + (76.3 X 475.6)]/5 — C.F. 

or +768.96. For treatments, S(xy) is [(318.8 X 907.3) + • • • + (238.6 X 

820.9)]/10 - C.F. or +686.55. For error, S(xy) is (+3889.25) - 

(+768.96) - (+686.55), or 2433.74. 

The summary is shown in table 38. 

The influence of cross-section area is seen to be small, though correlation 

if computed from the “error” line of the table will be found to be significant. 

The treatment differences in yield may be tested without allowance for 

correlation. The mean squares are: treatment 558.17/4 or 140; error 

2983.63/36 or 83. F is 140/83. By the adjustment procedure the error mean 

square is reduced from 83 to 71, but the treatment mean square is reduced 

even more. The treatments do not show significant differences in either 

case. The indication is that part of the apparent tendency to difference in 

treatments was due to the correlation and to unequal distribution of tree 

size among treatments. 

Covariance analysis will reduce the error and permit closer evaluation of 

differences, if correlation is real. It may enable detection of differences which 

would escape ordinary analysis, or may show that apparent differences are 

not real after allowance for correlation. 

21. A problem involving the probit transformation 

Use of transformations in regression, and of probits, is touched upon in 

Chapter 1. Use of probits assumes a “normal” distribution of logs of sus¬ 

ceptibility, and this seems to be close to the truth in many cases. If a straight 

line is fitted to logs of concentration and probits of mortality, it can be used 

to estimate the “LD-50”, or concentration effective on 50 %, one of the best 

measures of comparison; also to predict mortality at a given concentration. 

It also estimates the distribution of logs of susceptibility among subjects 

(that is, logs of the amount just sufficient to kill each animal). The log 

LD-50 estimates the mean; the regression coefficient, the reciprocal of the 

standard deviation. Bliss (1935a and 1935b) and Finney (1952) give de¬ 

tails of procedure. 

Table 38 

Source D.F. S(xy) W) 
D.F., 

adjusted 
S.S.E.E. M.S. 

T otal 49 19,237.87 +3889.25 8070.69 — — — 

Blocks 9 5,119.20 +768.96 4528.89 — — — 

Treatments 4 2,563.85 +686.55 558.17 — — — 

Error 36 11,554.82 +2433.74 2983.63 35 2471.02 70.60 

T & E 40 14,118.67 +3120.29 3541.80 39 2852.20 — 

Difference — — — — 4 381.18 95.30 
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Data on house fly mortality from pyrethrum spray may be used to il¬ 

lustrate calculations. 

Concentration, milligrams per liter 250 500 1000 2000 
(mg. /I.) 

Response 11/140 40/142 110/134 132/136 

Several degrees of complexity are possible. First, a simple graphic solu¬ 

tion can be made. Logs of concentration are plotted on the horizontal axis, 

probits of mortality on the vertical, as in Chapter 1. A line is fitted by eye 

and the log concentration for 50 % (5 probits) is read off. This quick method 

often gives surprisingly good results, and is used in starting out the more 

complex solutions. Probits for different percentages are given by Finney 

(1952), Fisher and Yates (1963), and others. Probits can also be secured 

from any table of areas of the normal frequency curve, such as found in 

most statistical textbooks. Percentage is taken as the proportion of the 

area reading from the middle (50 %); the probit is the corresponding plus or 

minus standard deviation value, with 5 added. 

For example, the second response above is 40/142, which is 28.2% or 

0.282. This is 0.218 below 0.50. In Snedecor’s cumulative normal table 

(1956, Ch. 8), 0.218 is reached at 0.58 standard deviation (“t”) from the 

mean. This is below the mean, so it is —0.58; adding 5, we have 4.42 for 

the probit. The third response is 110/134 or 0.821; it is 0.321 above 50%, 

with standard deviation value of +0.92 and probit 5.92. 

Second, a simple regression line can be fitted as in Chapter 1, instead of 

using an eye-fit. If mathematical fitting is used, however, it is better to use 

weights, as the probit values near 0 and 100 % are not so well determined 

and need a lower weight. 

Third, these weights can be used, and a weighted linear regression fitted 

as in the example below, but without the “maximum likelihood” adjust¬ 

ments of the probits. Weights for various probits can be secured from tables 

in sources named above. 

The weight (reciprocal of theoretical variance) is nz2/pq, where z is the 

ordinate of the normal curve, p is the proportion, and q is 1 — p. The part 

z2/pq is called the weighting coefficient (“f”); it can be secured from a table 

or by calculation, and multiplied by n. The first probit calculated, 4.42, is 

found in Snedecor’s table of normal ordinates (1956) to have an ordinate z 
of 0.337, corresponding to the 0.58 standard deviation or “t”. The p is 

0.282, the q is 0.718, the pq 0.2025, and “w” = z2/pq is 0.56. For n = 142, 

the weight is 0.56 X 142 or 79.52. Weights are usually secured for probits 

off the provisional line, rather than the actual percentages. 

The fourth stage is the full-scale probit solution, using adjusted probit 

values as well as weights. The adjustments are aimed to provide a slightly 
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better estimate of mortality, allowing for the trend among all observations. 

They were first used for eases of 100 % mortality in small samples, where we 

are sure 100% does not represent population conditions. They have since 

been applied to all probits, but in good data the change from original probits 

is not great. 

These adjusted or working probits are calculated as 

where y is the working probit, Y is the expected probit read off a provisional 

line, p is the original proportion observed, P is the proportion corresponding 

to Y (from table) and z is the ordinate corresponding to Y. The calculation 

is laborious, and tables to eliminate calculation are bulk}" and are not very 

widely available outside of Finney’s books. He shows very useful tables. 

One of these books is almost indispensable for such calculation. Where elec¬ 

tronic machines are used we make them calculate their own weights, ad¬ 

justments, etc. 

In the full-scale analysis we first get logs and probits, plot and fit a line 

by eye. From this line we read “expected” probits, and for these expected 

probits we secure weights and working probits. The calculation is then car¬ 

ried out as a weighted linear regression. In some cases if the new equation 

gives probits much different from the expected probits these new probits 

are taken as new expected values, and the calculation repeated till stability 

is reached. Many research organizations with access to an electronic calcu¬ 

lator have a “probit program,” which is a boon for these heavy calculations. 

The calculation will be carried through for the example shown. The usual 

set-up of many columns and few rows is switched for convenience in table 

39. We calculate x as 606.828/217.44 or 2.79078; y likewise as 4.95957. It is 

best to carry them to 5 places at this stage. The weighted sums of squares 

and products of deviations are calculated: S[nw(X — x)2] = S(XnwX) — 

xS(nwX); S[nw(y — y)2] likewise. S[nw(X — x)(y — y)} = S(Xnwy) — 

xS(nwy). The order of multiplication might be reversed in the case of the 

products. These sums of squares and products can be run up on a desk 

calculator without entering individual products. 

Calculating thus, we have: 

S[nw(X - x)2] = 1708.8876 - (2.79078 X 606.828) = 15.3642 

£[mc(W - x)(y - y)] = 3069.7146 - 3009.5995 = 60.1151 

S[nw(y - y)2) = 5588.3140 - 5348.4400 = 239.8740 
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Table 39 

Total 

Concentration 250 500 1000 2000 — 

(mg./liter) 
A” (log. concentra- 2.4 2.7 3.0 3.3 — 

tion) 
n 140 142 134 136 — 

r (number killed) 11 40 110 132 — 

V .079 .282 .821 .971 — 

Empirical probit 3.59 4.42 5.92 6.90 — 

Y (expected probit, 3.6 4.7 5.8 6.9 — 

from graph) 
w .30 .62 .50 .15 — 

nw 42.00 88.04 67.00 20.40 217.44 
y (working probit) 3.59 4.44 5.91 6.90 — 

nwy 150.780 390.898 395.970 140.760 1078.408 
nw X 100.800 237.708 201.000 67.320 606.828 

Part accounted for by regression = (60.1151)2/15.3642 = 235.2108 

Remainder, chi-square in this special case 4.6632 

This is not significant, with 2 degrees of freedom (number of concentra¬ 

tions minus two). 

This shows that variation can be ascribed to ordinary random chance, 

and that the theoretical variance is adequate. Regression coefficient, b, = 

60.1151/15.3642 = 3.9127. a = y — bx = —5.96. Equation is Y = —5.96 + 

3.9127 X. Using this equation we calculate new expected F’s from the 4X’s; 

they are 3.43, 4.60, 5.78, 6.95. These do not vary much from the expected 

F’s used above, and another cycle is probably not needed. The new F’s 

could be used to recalculate the last 6 lines of the table if it seemed needful. 

Setting F = 5 in the equation, X solves as 2.80; this is the log LD-50 or 

m, and the LD-50 is estimated as about 630. The variance of m is 1/62[1/ 

Snw + (ra — x)2/Snw (X — x)2]. This is a modification of a general re¬ 

gression formula, utilizing the fact that theoretical variance is embodied in 

the weights. We calculate Vm = 0.000304 and Sm = about 0.017. The vari¬ 

ance of b is estimated as 1 /[Snw(X — a;)2]; like Vm , this is a special modi¬ 

fication of a general formula. In our problem Vb is 0.0651 and sb about 0.255. 

Where chi-square is not significant, we assume infinite degrees of freedom 

(since these are theoretical variances) and use a t-multiplier of about 2. If 

chi-square is significant, we should multiply the variances by (chi-square 

divided by its degrees of freedom); and in using the standard errors, assume 

only 2 d.f. (t multiplier 4.3). 

There are further refinements in analysis, procedure for comparing curves, 

other short-cuts, etc., shown by Finney (1952); but the above account pre¬ 

sents most of the special features of probit analysis. 
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22. A problem using the probit-log transformation in an approximate 

comparison of insecticides 

Three insecticides were to be compared in a laboratory study of toxicity 

by test insects in a standard manner. The best comparison of insecticides 

is that of the strengths required for a given effect. The concentration giving- 

50 % mortality gives the closest comparison. This strength is best esti¬ 

mated from a dosage mortality curve by interpolation. The insecticides were 

each tested at three concentrations on six days, against an adequate sample 

of insects. The three concentrations gave opportunity to determine an ap¬ 

proximate dosage-mortality curve each time. For instance, test in insecti¬ 

cide C on the first day showed results as follows: 

Concentration units Mortality (%) 

1 

2 

4 

25 
42 
73 

This could be done by the mathematical methods already shown, but a 

graphic method was found to give sufficiently accurate results. 

The probit-log transformation gives approximate linearity, making inter¬ 

polation easy. A special plotting paper, with logarithmic intervals on the 

horizontal axis and probability intervals on the vertical axis, is available. 

On this, the original readings can be plotted, and the probit-log relation will 

appear. A straight line can be fitted by eye, and the concentration for 50 % 

mortality read off. When 50 % concentrations were read off they were tabu¬ 

lated (table 40). The days, involving different groups of insects differing in 

susceptibility, and other uncontrolled variation, correspond to blocks in a 

randomized block field test. The same analysis is adapted. It was carried 

out and summarized in table 41. This shows that the insecticides really dif¬ 

fered. A computation of “least significant difference” indicates that A and 

B are not significant in their difference, but that C is significantly lower 

than either. As lower concentrations are required for 50 % kill, it is indicated 

as more potent. 

Table 40 

Insecticide 
Day 

Total 
l 2 3 4 5 6 

A 3.6 2.5 1.3 2.2 2.2 1.6 13.4 
B 3.2 1.8 1.3 2.2 2.1 1.3 11.9 
C 2.2 1.6 1.5 1.3 1.8 1.2 9.6 

Total 9.0 5.9 4.1 5.7 6.1 4.1 34.9 
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Table 41 

Source of 
variation 

Degrees of 
freedom 

Sum of 
squares 

Mean 
square 

Days 5 5.37 1.07** 
Compounds 2 1.22 0.61* 
Interaction, days X com- 10 1.01 0.10 

pounds (error) 

** Highly significant. * Significant. 

The logarithms of LD-50’s may be used instead of concentrations in 

analysis; they will be somewhat better adapted to the assumptions of 

analysis, and may give more precise results than simple concentrations. 

However, in the present case, their use leads to the same conclusions. 

The solution may of course be made by more complex methods, such as 

those used by Finney (1952). However, such an approximate solution as 

that above gets most of the information. In this particular case more com¬ 

plex methods were carried out with no change in decision. 

23. Determination of synergism by short-cut methods 

Synergism in a mixture of insecticides is defined as some interaction giv¬ 

ing a greater effect than could be expected from their separate actions. It 

has been mentioned in a preceding chapter. The writer has published a dis¬ 

cussion of synergism (Wadley 1945). The maximum effect of a mixture, 

short of synergism, is usually that of similar, additive effect (Bliss 1939). 

To determine synergism it is necessary (1) to define this additive effect from 

separate action, and (2) to show that the mixture gives results greater than 

the additive effect. 

Finney (1952) shows detailed analytical procedure based on probit anal¬ 

ysis, for this problem. A shortened graphic procedure is usable in this con¬ 

nection. Trials must be available giving a dosage-mortality curve for each 

ingredient alone, in the middle and upper range of mortality. The amount 

of each necessary to produce a given mortality will give an estimate of 

equivalence. Using this estimate, the concentration of the mixture can be 

expressed in terms of either one of the ingredients. The expected mortality 

can be determined from the dosage-mortality curve for the ingredient cho¬ 

sen. This expected mortality can be compared with actual mortality for 

the mixture. 

For plotting, concentration and mortality can be transformed to logs 

and probits, respectively, giving a more linear curve. However, log-proba¬ 

bility paper is available, on which dosage and percentage can be plotted 

without transformation for graphic work, with the same effect. 
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Data are taken from an article by Martin (1942), also used by Finne}7 

(1952). They are mortalities of an aphid species treated with rotenone and 

deguelin (table 42). These data were plotted on the log-probability paper 

mentioned, and straight lines were fitted by eye. The 50% mortality is 

estimated from the line to require a 4.8 concentration of rotenone or 13.2 

of deguelin. Thus deguelin appears to be 0.36 as good as rotenone. At 90%, 

the comparison is 9.7 to 28.0, or a ratio of 0.35. The average ratio is 0.355. 

Mortalities with mixtures of the two are shown in table 43. After calcu¬ 

lation of rotenone equivalent, the expected mortality is read off the rote¬ 

none line already drawn. The actual exceeds the expected mortality slightly 

at each point, but not greatly. They agree fairly well. Martin’s data were 

based on replicated trials, and he cites standard errors that show the excess 

mortality is not significant. 

Where replicated trials are made, repeated determinations of equivalence 

can be made and standard errors calculated for both expected and actual 

effects; significance would thus be tested. 

Suppose that the mortalities above were drawn from trials replicated on 

3 days (table 44). 

We could determine expected equivalence for each day, by the process 

outlined above. When this is done, rotenone equivalents for deguelin are 

0.36, 0.36, 0.35 respectively; little variation appears. 

Suppose further that the mixtures yielded results on the same days as in 

table 45. The same rotenone equivalent is used for all 3 days, since the 

values were so similar each day. Had they differed much, the figure for each 

Table 42 

Rotenone Deg uelin 

Concentration 
(mg./liter) 

Mortality 
(%) 

r Concentration 
(mg./liter) 

Mortality 
(%) 

3.8 33.3 10.1 37.5 
5.1 52.2 20.2 70.8 
7.7 85.7 30.3 95.9 

10.2 88.0 40.4 94.0 

Table 43 

Rotenone 
(mg./liter) 

Deguelin 
(mg./liter) 

Rotenone 
equivalent 
(rotenone + 

0.355 deguelin) 

Actual 
mortality 

(%) 

Expected 
mortality 

(%) 

2.0 8.1 4.9 58.7 50 
3.0 12.2 7.3 79.2 78 
4.0 16.3 9.8 93.5 90 
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Table 44 

Rotenone Deguelin 

Concentration 
Mortality 

Concentration - 
Mortality 

Day A Day B Day C Day A Day B Day C 

3.8 33 29 38 10.1 35 37 40 

5.1 48 50 58 20.2 70 67 75 
7.7 85 83 89 30.3 96 95 97 

10.2 86 89 90 40.4 89 94 98 

Table 45 

Concentration Mortality (expected in parentheses) 

Rotenone Deguelin Rotenone 
equivalent Day A Day B Day C 

2.0 8.1 4.9 55(49) 57(48) 64(56) 

3.0 12.2 7.3 79(76) 76(76) 83(83) 
4.0 16.3 9.8 92(89) 93(90) 95(93) 

day might have been used for that day’s results. The dosage-mortality 

curve for rotenone for each day is taken; the mortality corresponding to 

rotenone-equivalent concentration is read off (for 4.9, 7.3, 9.8) as expected. 

Thus for each concentration level we have an expected and actual series 

for comparison by standard error methods. Using pair differences, signifi¬ 

cance seems to be attained in the higher and lower concentrations of this 

hypothetical series, but not in the middle concentration. If mixtures were 

not tested on the same days as the separate ingredients, pair differences 

could not be used, and error would likely be larger. 

It should be stated that synergism, in the strict sense, is limited to mix¬ 

tures of substances each having some toxicity. Where a nontoxic substance 

improves that action of the toxicant, it is not synergism but simple activa¬ 

tion, and statistical treatment is simpler. Significant increase in mortality 

in replicated trials should be sufficient to show simple activation. 

2d. Analysis of experimental error 

Where the error estimate is compound, the contribution of major and 

minor sources can be evaluated. In an experiment where the major units are 

plots, and plot values are derived from sampling; or a sampling investiga¬ 

tion with fields as units, and subunits within fields; this will apply. It is 

necessary for this evaluation that randomness be observed in arrangement 

of both units and subunits. (For ordinary analysis based strictly on units, 

randomness is not needed among subunits.) 
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An abridged example has already been given in the chapter on sampling, 

Section 7. As another example, spray deposits were measured at 3 times with 

with several determinations per time. The 3 times themselves may be 

thought of as a sample from a large series of times that might be taken. 

The determinations each time are then in the category of subsampling. The 

determinations within times, and the times themselves, are essentially ran¬ 

dom as far as we know. The analysis is summarized: 

Degrees of Mean 
freedom square 

Between times 2 21.38 
Between determinations within times 12 1.69 

Using the notation of Chapter 2, Section 7, n = 3, k = 5, B = 1.69, 

A = (mean square between times minus mean square within times), di¬ 

vided by k. Thus A = (21.38 — 1.69)/o, or 19.69/5, or 3.94. A is the vari¬ 

ance between times, over and above that to be expected from within times, 

brought to a single-determination level. If there is no real variation between 

times at all, we would expect some variance (about 1.69 more or less) be¬ 

tween times, because within-time variance would produce it. The significant 

mean square for between times shows that there is some real variance, over 

and above the expected 1.69. Thus two sources of variation affecting any 

single determination are separated. 

For such a single determination, at any given time, we may expect a 

variance around the true mean of A + B, or 3.94 + 1.69, or 5.63. If two de¬ 

terminations are made at one time, the expected variance of their mean is 

3.94 -j- 1.69/2, or 4.78. The “A” part will not be reduced, unless time is 

replicated. If 4 determinations are made at a single time, the variance esti¬ 

mate is 3.94 + 1.69/4 or 4.36. Suppose, however, 2 determinations are made 

at each of 2 times, 4 in all; the estimate is 3.94/2 + 1.69/4 or 2.39. 

By this process, expected variances (and standard errors) of means can 

be worked out, and more efficient combinations can often be derived in com¬ 

pound sampling. If A has a real existence (indicated by significant UF”), a 

gain will always be given by splitting up the sampling. The limit to the 

process will be practical, not statistical. Experimental costs should be con¬ 

sidered (see Chapter 2, Section 7). 

This process may be used in exploring effects of number of samples and 

subsamples; or of number of replications and of sample units per plot. It 

may be used to test effects of size of plots, where a plot is thought of as 

composed of several adjacent units. 

25. Gain from spreading sampling 

This has been briefly treated in Chapter 2, Section 7, in a case where 20 

fields and 5 units per field were taken to estimate wheat yield in a county. 
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Another case is taken from insect population sampling. In cotton flea- 

hopper counts, 100 terminals were taken at each of 2 points per field, in a 

number of fields. The number of insects per terminal was counted. It was 

desired to investigate possible improvement from studying more points per 

field and fewer terminals per point. For this purpose each set of 100 may 

be regarded as 4 adjacent sets of 25. While lots of 25 terminals were not 

counted separately, and no determinations of adjacent units were available, 

the theoretical minimum variance was used. It seemed likely that adjacent 

samples would show a variance not much above this theoretical value. These 

population counts would be expected to have the Poisson variance equal to 

the mean. 

The average variance among counts between locations within fields was 

44.3. The variance of the mean of 2 points was 22.2. The theoretical variance 

was 17.4. We may put these on a basis of per 25 instead of per 100 terminals. 

If the variance of numbers per 100 is 44.3, the variance of numbers per 25 

is estimated as 11 08; but the variance of numbers per 100 estimated from 

only 25 is 16 times as great, or 177.2. In the same way, the theoretical vari¬ 

ance per 100 is 17.4; per 25, 4.35; per 100 estimated from 25, 69.6. This can 

be set up: kA -f- B = 177.2, k = 4 (since 4 sets of 25 occur in 100), B = 

69.6, A = 26.9. The variance of the mean of n locations and k sets of 25 

per location is A/n + B/nk. For 1 set of 25, at 1 point, it is 26.9/1 + 

69.6/1 = 96.5 for estimated population per 100 terminals. 

For 1 point with 4 sets of 25, it is 26.9/1 + 69.6/4 = 44.3 

For 2 points with 4 sets of 25 each, it is 26.9/2 + 69.6/8 = 22.1 

For 4 points with 1 set of 25 each, it is 26.9/4 + 69.6/4 — 23.4 

For 8 points with 1 set of 25, it is 26.9/8 + 69.6/8 = 12.1. 

The 2 X 4 is the combination that had been used; 4 X 1 is nearly as good 

with half the material; while 8 X 1 is considerably better with the same 

amount of material examined. 

This scheme may be extended to more than two orders of compound 

sampling. In a grasshopper egg-sampling technique study, examinations 

were made of 10 fields, 50 locations in each field, and 2 adjacent subunits 

at each location. Analysis of variance among egg-pod counts is as shown in 

table 46. It will be seen that under these particular circumstances, adjacent 

subunits varied nearly as much as separate locations. The variance of the 

latter reached significance only because of the large numbers of observa¬ 

tions. The theoretical variance was 0.19. The variance of a single observa¬ 

tion may here be subdivided into 3 portions, which may be called A, B, and 

C. The mean square between subunits within locations, 0.20, is C. If the 

number of fields is n, the number of locations per field is k, and the number 

of subunits per location is j; the mean square between locations within fields 

is jB + C. This gives us 2 B + C = 0.26; 2 B = 0.06; B = 0.03. Also, the 
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Table 46 

Degrees of 
freedom Mean square 

Between fields within the area 9 1.16** 
Between locations within fields 490 0.26* 

Between subunits within locations 500 0.20 

** Highly significant. * Significant. 

Table 47 

Degrees of 
freedom Mean square 

Between blocks 3 1378.98** 

Between treatments 9 397.55** 

Interaction, block X treatment 27 

* * l- 
CO 

00 

(error for treatment) 
Between trees within plots 80 19.73 

** Highly significant. 

mean square between fields is kjA + jB + C; or 100 A + 2 B + C = 

1.16. Solving, A = 0.009, or about 0.01. The variance of the mean of any 

combination of n, k and j will be A/n + B/nk + C/nkj. 

26. Analysis of error in a plot experiment 

An experiment testing sprays on apples against the codling moth had 10 

treatments, 4 replications in randomized blocks, and 3 trees per plot. Data 

were estimates of worms per 100 apples. Analysis was summarized as in table 

47. The mean square between trees within plots is in a sense error for inter¬ 

action; it is also a component of this interaction, which is error for treat¬ 

ments. Since the 3-tree plots are randomfy chosen for treatments within each 

block, the within-plot differences are an expression of random differences 

among adjacent trees. The three trees may be looked upon as 3 adjacent 

plots. It should be obvious that where treatments must be in somewhat 

separated plots, variance among adjacent plots is not adequate as error. It 

may be used, however, to test effect of size of plot within reasonable limits. 

In this case, mean square between trees within plots is an estimate of 

B. The mean square for interaction, block X treatment, is an estimate of 

variance among plots treated alike within a block. This is kA + B. Since 

k — 3 (trees per plot), 3A + 19.73 = 81.37, and A — 61.64/3 or 20.55. 

The error mean square for n replications and k trees per plot will be esti¬ 

mated as A/n + B/nk, where the plot size is reasonably small. In this case, 

solution led to a change to single-tree plots; since they made better use of 
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the total material than 3-tree plots, and were satisfactory from the practical 
standpoint. If will be seen that single-tree plots replicated 12 times give a 
lower error variance than 3-tree plots with 4 replications. As a matter of 
fact, 6 replications of single-tree plots give in this variable material about as 
good results as 4 replications of 3-tree plots. The variance of a treatment 
mean in the experiment as carried out is 81.37/12, or 6.78, since the trees 
are units in analysis and there were 12 per treatment. This is the same as 
20.55/4 + 19.73/12. For 6 replications, single-tree plots, the estimate is 
20.55/6 + 19.73/6, or 3.42 + 3.29, or 6.71, with half the trees. 

As stated, this process may also be applied to cases where plot values 
are determined by sampling. It will give a test of effect of varying combina¬ 
tions of sample units and plot replication. To use the process validly, sam¬ 
ples should be random within the plots. Randomness within plots is not 
required for practical evaluation of experimental results, if the plots them¬ 
selves are assigned randomly. 

27. Solution for minimum error of compound sampling with fixed costs 

This subject has been touched upon in Chapter 2, Section 7. An example 
may be drawn from grasshopper egg survey work. In the preliminaiy attack 
on the problem, cost estimates were limited to time used, which could be 
converted to money cost fairly easily. The “overhead cost” of locating a 
field, writing it up, etc., was estimated as 60 minutes. The cost per unit 
after reaching a field was estimated as 4 minutes. The total cost allowable 
was taken as 720 minutes. For one county the mean square between fields 
(using egg-pods per unit area) was 0.93; between units within fields, the 
mean square was 0.42. The variances A and B were estimated as before. 
Since k, the number of units per field, was 10; 10A + B = 0.93; B = 0.42; 
A = 0.05. If C = cost per unit (4 minutes), CD = cost per field (60 minutes); 
optimum k = \/BCD/AC- Here, estimated 

k = ■%/ (0.42 X 60)/(0.05 X 4) = \/25.20/0.20 = V126.00 = 11.2. 

The optimum for k under these conditions is about 11. Then n = T/(CD + 
kC), where T is the limiting cost. This gives us 720/[60 + (11 X 4)], or 
720/104, or about 7. The estimate of optimum combination for low error 
with 720 minutes work is 7 fields with 11 units per field, in this set of condi¬ 
tions. 

It is true that overhead cost per field would be lower if number of fields 
was greatly increased, but the above approximation should work over a 
reasonable range. It can be seen that this same relation could be used in 
another way. The variance of the mean could be set at a satisfactory figure, 
and solution made for the n and k needed to give minimum total cost with 
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this variance. In such a solution, k will be estimated as before, and n as 

(kA + B)/(Vik), where V£ is the desired variance of the mean. 

28. Factorial design and single degrees of freedom 

This subject has been mentioned in Chapter 3; the advantage in efficiency, 

and some specific designs, have been discussed. The cage experiment with 

4 criteria of classification (Example 17) is a 2 X 3 X 3 factorial, as far as 

experimental treatments are concerned. The 4 years are treated as replica¬ 

tions or “blocks.” The split plot experiment (Example 18) is a 3 X 3 X 3 

factorial, with the complication that one treatment is on a whole-plot 

scale, the others in subplots. 

An experiment a few years ago on cotton insects included treatments with 

cryolite and sulphur, with all combinations of presence or absence. There 

were three replications in randomized blocks. The percentages of bolls in¬ 

jured by bollworm are given in table 48. The treatment totals are as shown 

in table 49. This may readily be analyzed by the ordinary method, as sum¬ 

marized in table 50. 

The treatment degrees may readily be subdivided by ordinary methods 

into two effects, and interaction of the two. The sum of squares for the 

treatments is 287.39. Of this, the sum for the degree of freedom comparing 

sulphur and no sulphur is [(92.3)2 -f (85.5)2]/6 — 2634.40 (the correction 

factor). This comes out as 3.86, with one degree of freedom. The sum for 

cryolite vs. no cryolite is [(59.9)2 + (117.9)2]/6 — 2634.40, or 280.34. The 

Table 48 

Block 1 Block 2 Block 3 Total 

No treatment 19.7 23.5 19.0 62.2 
Sulphur alone 17.7 22.5 15.5 55.7 
Cryolite alone 8.2 11.2 10.7 30.1 
Cryolite and sulphur 11.2 8.8 9.8 29.8 

Total 56.8 66.0 55.0 177.8 

Table 49 

Sulphur No sulphur Total 

Cryolite 29.8 30.1 59.9 
No cryolite 55.7 62.2 117.9 

Total 85.5 92.3 177.8 
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Table 50 

Degrees of 
freedom Sum of squares Mean square 

Blocks 2 17.41 8.70 
Treatments 3 287.39 95.80 
Error 6 28.02 4.67 

Table 51 

Degree of 
freedom 

Reading for- 

Net 
sum Divisor (Sum) V 

divisor 
Block A Block B Block C 

o 
19.7 

s 
17.7 

c 
8.2 

sc 
11.2 

o 
23.5 

s 
22.5 

c 
11.2 

sc 
8.8 

o 
19.0 

s 
15.5 

c 
10.7 

sc 
9.8 

Bi (blocks) + + + + — — — — 0 0 0 0 -9.2 8 10.58 

b2 + + + + + + + + -2 -2 -2 -2 +12.8 24 6.83 

Ti (Sulphur) — + — + — + — + — + — + -6.8 12 3.85 
T2 (Cryolite) - — + + - - + + - - + + -58.0 12 280.33 

Tj (S X C) + - - + + - - + + - - + +6.2 12 3.20 

Bi X Ti — + - + + - + — 0 0 0 0 +4.4 8 2.42 

Bi X T2 - - + + + + - - 0 0 0 0 +8.0 8 8.00 

Bi X T3 + - - + - + + - 0 0 0 0 +6.4 8 5.12 

B2 X Ti - + - + - + - + +2 -2 +2 -2 +6.4 24 1.71 

b2 x t2 - - + + - - + + +2 +2 -2 -2 -16.0 24 10.67 

B2 X Ts + — — + .+ — + -2 +2 +2 -2 -1.6 24 0.11 

sum for their interaction is 287.39 — 280.34 — 3.86, or 3.19. Practically 

all the treatment variance is due to effect of cryolite. 

All “degrees of freedom” in this simple set-up may easily be separated. 

With more than two degrees in a set, more than one set may be arranged 

from the same material. The 3 treatment degrees are arranged to give sul¬ 

phur vs. no sulphur, cryolite vs. no cryolite, and interaction of cryolite and 

sulphur. While other arrangements might be made, this is the one that 

brings out the interesting comparisons. The two degrees for blocks offer no 

especially interesting comparisons; they may follow the simplest scheme, 

A — B and A 4- B — 2C. The 6 degrees for interaction, block and treat¬ 

ment, may be derived as products of the corresponding treatment and block 

degrees. In table 51 the coefficients are negative or positive; where a co¬ 

efficient is 1 the figure is omitted, using a simple + or —. The divisors are 

the sum of squares of coefficients. Treatment combinations are indicated 

by o, s. c, sc 

Selection of combinations follows several simple rules. The coefficients 

for any single degree must total zero; the products of corresponding coeffi¬ 

cients in any two degrees must add to zero. Any single value should not be 
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used by itself more than once; it may be used later in combinations, but not 

more than once in the same combination (note the block comparisons, 

(A — B), (A + B — 2C)). There are only n — 1 independent comparisons 

in a set. “Net sum” is found by adding horizontally the individual values 

at the column heads, according to coefficients. For Bi , for example, 19.7 + 

17.7 + 8.2 + 11.2 - 23.5 - 22.5 - 11.2 - 8.8 = -9.2 (table 51). The 

sum of squares for the d.f. is (net sum)2/divisor. The divisor is the sum of 

squares of coefficients. 

The sum of squares for each individual degree is shown in the last column. 

It will be observed that the sums for the 2 “block” degrees, and the sums for 

the G “error” or interaction degrees, add up to the totals already derived 

for blocks and error. The sums for the treatment degrees also check with the 

previous calculation, with small differences due to rounding. 

The block and error degrees of freedom, in an experiment like this, or¬ 

dinarily need not be separated. The individual treatment degrees are often 

of considerable interest. They may be separated by a short-cut version of 

the process above. The little 2X2 table of cryolite vs. no cryolite, sulphur 

vs. no sulphur, may be utilized. The difference of column totals, 85.5 and 

92.3, will give the net sum —6.8 for sulphur as in the detailed table. The dif¬ 

ference of row totals, 59.9 and 117.9, will give —58.0 for cryolite. The dif¬ 

ference of diagonal totals, 92.0 and 85.8, will give the net sum for interac¬ 

tion of sulphur and cryolite. Using the proper divisors the sums of squares 

may easily be calculated. 

29. Confounding in a plant disease problem 

An experiment in bulb growing was run as a 3 X 3 X 3 factorial. One 

treatment, A, was prestorage fungicidal treatment; at 3 levels, none, weak, 

and strong. The two latter were nearer equal than would be supposed, since 

the stock solution used for the “weak” was more potent. The second treat¬ 

ment, B, was drying; none, 2 hours, 12 hours. The third, C, was preplanting 

fungicidal treatment ; none, weak, or strong. 

The 27 combinations were made up in 3 groups of 9 each, so as to confound 

2 of the 8 degrees of freedom for triple interaction with groups. The groups 

were then randomized in 3 blocks of 9 small plots each. There was no ab¬ 

solute replication. The triple interaction was relied upon as an estimate of 

error. The criterion was the number of diseased bulbs produced by the dif¬ 

ferent treatments in the standard plantings. The numbers are rather small 

for analysis without transformation, and the experiment is limited in scope, 

but it will serve to illustrate the methods. 

The arrangement of groups had to be made with great care. As with most 

of these designs, this arrangement is a paper problem, quite distinct from 
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the later problem of randomizing the actual field locations. Each of the 27 

units was classified according to the level of three treatments. These may be 

called Ai , A2, A3 ; Bi , B2, B3 ; Ci , C2, C3 . The treatment involving no 

prestorage or preplanting fungicide, and no drying, is Ax, Bi, Ci . With the 

lower level of “A” treatment and no B or C, the symbol is A2BiC\ ; the 

others follow the same plan. Yates (1937) describes the design. 

It should be noted that in fairly simple cases such as the preceding ex¬ 

ample or those mentioned in Chapter 3, there is considerable latitude in ar¬ 

ranging the individual degrees of freedom. When the material grows more 

complex, as in this example, the arrangement of single-degree comparisons 

grows more difficult. Usually the comparisons in interactions are more or less 

“formal;” to get all of them arranged it is necessary to follow rather rigid 

procedure, and it is difficult to vary the procedure to make specially inter¬ 

esting comparisons. The triple interaction in a 3 X 3 X 3 with its 8 degrees 

of freedom is a good illustration of this. In making up these degrees of free¬ 

dom, Yates (1937, Secs. 10-12) sets out the results in 3 X 3 tables of two 

treatment combinations for each level of the third. This makes 3 such ta¬ 

bles. In our notation the numbers of diseased bulbs are shown in table 52. 

In arranging degrees of freedom for triple interaction, the diagonals of each 

division of the table are taken to form the “I” and “J” table (table 53). 

The “I” diagonals of the Ai are BiCi + B2C2 + B3C3 ; BiC2 + B2C3 + 

B3Ci ; BiC3 + B2Ci + B3C2 ; or 60, 43, and 44. These are the U , I2 and 

I3 values. The same procedure is followed with the A2 and A3 tables, giving 

a 3 X 3 table of B to I3 vs Ai to A3. The “J” diagonals for Ai are B3Ci + 

B2C2 -b BiC3 ; B3C2 + B2C3 -j- BiCi ; B3C3 4- B2Ci 4~ BiC2 . The values 

are 51, 46, and 50 respectively. Proceeding in the same way with A2 and 

A3,9 values in all are obtained for AJ combinations. 

The six diagonals of each division of table 53 are taken in the same 

manner. It will be seen that each AI or AJ figure represents 3 original units, 

and each diagonal of AI and AJ represents 9 units. The 3 diagonal totals 

from the left of the “I” table give a set which can be used for 2 degrees 

of freedom of the triple interaction. They are calculated as (Total 1 — 

Total 2)2/18 and [Total 1 4- Total 2 — 2(Total 3)]2/54. The three totals of 

Table 52 

Ai A2 A3 

Bi Bo b3 Bi Bo B3 Bi b2 b3 

Ci 22 17 15 6 10 12 12 12 15 
c2 15 20 11 3 2 6 2 6 4 
c3 16 13 18 7 4 2 7 11 5 
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Table 53 

I J 

Ai A 2 A3 Ai A2 A3 

II 60 10 23 Ji 51 21 28 

I2 43 19 28 J2 46 16 27 

I3 43 23 23 J 3 50 15 19 

Group 1 
Table 54 

Group 2 Group ; 

A1B1C1 ArBjCs AJBjC: 
A1B2C3 AiB 2C2 A1B2C 
A1B3C2 AiBaCj A1B3C: 
A2B1C2 AaBrCi A2B1C; 
A 2B 2C1 A2B 2C3 A2B2C 
A2B3C3 A2B3C2 A2B3C 
A3B1C3 A3B1C 2 A3B1C] 
A3B 2C 2 A3B 2C1 A3B 2C; 

A3B3C1 A3B3C3 A3B3C; 

the I division diagonals from the right give 2 other pairs. The J division 

gives 4 others. These are the 8 degrees for triple interaction. 

In confounding two of these degrees with blocks, the aim is to make the 

block comparisons the same as those of the interaction. This is accomplished 

by taking the 3 sets of 9 from one of the sets of diagonals mentioned and 

using them in the 3 blocks. Each of these sets will contain all the two-way 

combinations and will be balanced for A, B, and C, because of the method 

of making it up. 

For the AJ division, the first diagonal from the left is AiJi + A2J2 + 
A3J3. Tracing the formation back, this combination includes the 9 units; 

AJAA , AxBA , AAC3, A2B3C2, AoB2C3 , A2B1C1, A3B3C3, A3BA , 
A3BiC2. These 9 accordingly are put in the first block. The second diagonal, 

AiJ2 + A0J3 + A3J1 , give 9 units to be included in the second block; the 

third, A1J3 + A2Ji + A3J2, gives the third block group. These are drawn, 

together and put in logical order in table 54. 

The set of 9 first arranged is “group 2” above. Thus the block compari¬ 

sons are made to coincide with 2 degrees of freedom in triple interaction. 

Each set may be seen to include every combination of two factors, though 

all three must be taken to get every combination of three. The sets were 

randomized in the plots of each block for the actual field work. 

With more than one replication, the confounding might be extended; 

in a second replication, instead of the left diagonals for AJ, the left (or right) 

diagonals for AI might be taken; and so on. Thus each degree of freedom for 
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triple interaction would be confounded in one replication and free in others. 

It could thus be calculated. However, it is seldom that special interest at¬ 

taches to particular degrees of freedom for triple interaction. 

This gives an idea of the methods necessary in working out confounding 

schemes. Statistical analysis of results is not difficult. Sums of squares for 

individual degrees of freedom may be calculated as in the preceding exam¬ 

ple. The use of diagonal totals of AI and AJ tables has been outlined for 

triple interaction. Two-way interaction may be calculated from differences 

of diagonal totals in tables constructed for all combinations of A and B, 

B and C, A and C. Main effects follow lines of the previous example. Where 

the treatment is in ascending steps, linear and curvilinear components may 

be separated. 

It is not even necessary to calculate individual degrees unless they are of 

special interest. If we are once assured that confounding has been properly 

done, analysis can be carried out as in previous work. Sums of squares for 

main effects and two-way interactions can be calculated quickly in the 

ordinary way, using a correction factor. Triple interaction sum of squares 

may be secured by subtraction from the total. The sum of squares for blocks 

may be calculated, and deducted from the sum for triple interaction. The 

remaining 6 degrees of triple interaction gave an estimate of error. If single 

degrees are calculated for two-way interaction, unimportant constituents 

could be included in the error. 

The summary of analysis is shown in table 55. 

30. A triple lattice experiment 

Preliminary tests had been made of large numbers of barley strains for 

resistance to an insect pest. It was desired to use the more promising strains 

Table 55 

Source of variation “Sedom * Sun, of squares Mean square 

Between treatments 6 — — 

Main effects: 
Effect of A 2 549.56 274.78** 
Effect of B 2 2.89 1.44 
Effect of C 2 160.89 80.44f 

Two-way interactions 12 73.33 6.11 
lumped 

Triple interaction 8 — — 

Blocks 2 8.67 4.34 
Remainder, used as 6 99.33 16.56 

error 

** High significance. f Near significance. 
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in a more precise test with limited replication. A lattice design was sug¬ 

gested as likely to get the most out of the material. Since 3 replications, 

and probably not more, could be used, the triple lattice fitted the case a 

little better than would a simple lattice giving 2 or 4 replications. A triple 

lattice compares more pairs directly than a simple lattice. The design is 

described by Cochran and Cox (1957) or Cox, Eckhardt, and Cochran 

(1940). 

It is best that the number of varieties or treatments be a perfect square 

to make up these designs. With a great many treatments, omission of a 

few or inclusion of a few more is usually not difficult. In this case it was 

fairly easy to round out the number of strains for further test to make 100. 

Accordingly 100 were selected and numbered from 1 to 100. The sets are 

fairly easy to work out, if the n2 treatment numbers are set down in con¬ 

secutive order in an n X n square. The first n letters are then written in to 

give a Latin square; each letter must occur once and only once in each row 

and each column. The rows give one group of sets, the columns another, 

the Latin letters another. This insures that pairs of treatments occurring 

together in one set will not occur in another. It is not necessary that the 

Latin square be a random one, such as would be needed for field plots; a 

systematic rotation of letters can be used. In this design the square is used 

only for making up the sets; randomization in field blocks comes later. 

In the present case, however, a random square was written. The square 

was written to make up sets for strains 1 to 100 (table 56). 

The 10 sets of 10 strains for the first replication are made up from the 

rows: 1, 2, 3 • • • 10; 11, 12 • • • 20; etc. For the second replication they are 

made up from the columns: 1, 11, 21 • • • 91; 2, 12 • • • 92, etc. For the 

third replication they are made up from the letters. The first set is made up 

from the A’s: 1, 14, 26, 37, 42, 60, 68, 73, 85, 99. The second set is made up 

from the B’s: 2, 11, 29 • • • 95. The other sets follow the same rule. 

Thus 3 groups of 10 sets, each of 10 strains, are made up. They fulfill 

the requirements for this design, and the appropriate process of analysis 

Table 5G 

1A 2B 3C 4D 5E 
11B 12E 13 J 14A 15H 
21C 221 23D 24G 25J 
31D 32F 33B 34C 351 
41E 42A 43G 44F 45C 
51F 52C 531 54 H 55G 
61G 62J 63F 641 65D 
71H 72G 73A 74B 75F 
811 82H 83E 84J 85A 
91J 92D 93H 94E 95B 

6F 7G 8H 91 10J 
16C 17F 18D 19G 201 
26A 27H 28E 29B 30F 
36E 37 A 38G 39J 40H 
461 47J 48B 49 H 50D 
56B 57 D 58J 59E 60A 
66 H 67E 68A 69 C 70B 
76J 77C 781 79D 80E 
86 D 87 B 88C 89 F 90G 
96G 971 98F 99A 100C 
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can be used with them. The next concern is placing them in the field. Each 

replication should be in one solid area. This area should be of 100 plots, 

divided into 10 blocks, each of 10 contiguous plots. There are no other 

special restrictions on shape of replication areas or blocks. The 10 sets of 

each replication must be randomized among the 10 blocks of its area, and 

the 10 strains of each set among the 10 plots of each block. 

There are thus 3 replication areas, 30 blocks, and 300 plots. Insect 

attack was rather epidemic in character early in the season, and percentage 

of leaves affected was taken as the criterion of infestation. A diagram of the 

layout, with strain numbers above and percentages of attack below for 

each plot, is shown in tables 57, 58, and 59. 

Analysis proceeds as follows: first the ordinary calculation as for a ran- 

Table 57. Replication 1 
Block total 

8 10 9 7 6 3 5 1 4 2 
82 68 52 73 79 53 70 68 84 80 709 

53 51 58 55 54 56 60 59 57 52 
49 82 66 54 28 59 51 43 55 48 535 

68 64 70 63 65 67 61 69 66 62 
28 47 41 40 61 30 52 35 46 49 429 

81 84 88 85 89 86 82 90 87 83 
66 65 26 93 70 41 27 40 42 44 514 

97 91 95 100 94 92 98 93 96 99 
69 48 35 74 23 70 47 45 59 86 556 

14 20 11 16 13 17 12 18 19 15 
50 48 60 61 62 47 44 50 61 69 552 

71 78 73 75 80 76 74 77 79 72 
39 35 44 56 58 39 35 30 28 42 406 

25 28 21 24 26 30 29 22 27 23 
44 86 40 40 38 46 40 48 42 51 475 

39 31 36 38 34 33 40 35 37 32 
38 38 56 50 56 41 49 50 47 65 490 

48 43 46 42 41 44 50 45 47 49 
42 46 38 52 55 37 36 41 66 70 483 

5149 
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Table 58. Replication 2 
Block total 

49 29 99 69 89 79 9 59 39 19 
47 43 81 34 87 24 56 51 36 60 519 

70 80 50 100 20 40 30 60 90 10 
31 57 32 64 57 50 46 65 35 68 505 

73 63 83 23 13 43 53 33 93 3 
39 43 45 52 59 50 34 37 55 40 454 

26 16 56 6 76 86 96 46 36 66 
37 55 78 73 46 59 74 36 60 58 576 

58 98 28 78 68 38 88 8 48 18 
61 56 89 37 24 54 20 78 75 57 553 

62 52 2 42 22 82 12 32 92 72 
47 45 70 52 50 23 41 49 43 35 455 

45 25 95 5 75 15 65 35 85 55 
49 50 40 78 74 56 61 52 66 54 580 

44 94 4 34 54 84 14 74 64 24 
40 29 63 60 24 48 38 32 40 43 417 

81 1 61 51 31 71 91 41 11 21 
58 75 36 57 48 34 43 55 60 36 502 

97 27 87 67 77 57 7 47 37 17 
54 50 43 22 33 60 58 66 47 52 485 

5046 

domized block experiment is carried out. Variance for treatment, replica¬ 

tion, and interaction are calculated, ignoring the confounding. This gives 

results as in table 60. 

The replication differences are clear-cut, as all varieties are included in 

each. The variety differences will be adjusted later. The sum of squares 

for interaction is to be reduced by estimating small block variance. Small 

block differences are estimated here by taking all varieties in each block 

and comparing results with the same varieties over the rest of the experi¬ 

ment. For instance, Block 1 has percentages totaling 709. The same vari- 

ties, 1 to 10, in various blocks of the second replication, total 659. In the 

third, these varieties total 583. The estimate of deviation of this block 

from the general mean is (2 X 709) — 659 — 583, or +176. Block 2, in 

the same way, has a deviation of +72. We secure 30 such deviations, total- 
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Table 59. Replication 3 

37 85 68 14 73 42 1 60 99 26 

Block total 

40 67 31 43 40 40 72 50 83 45 511 

69 52 16 100 3 77 34 21 45 88 
31 40 71 57 38 33 69 39 42 25 445 

33 56 2 48 70 87 95 11 74 29 

48 60 68 50 37 47 32 69 43 67 521 

10 91 25 84 13 39 62 58 76 47 

70 46 53 48 69 58 50 72 51 82 599 

81 20 64 78 22 46 35 53 97 9 

66 50 43 35 45 37 58 44 47 67 492 

5 59 83 80 41 36 12 67 28 94 

50 42 46 61 55 54 42 22 90 28 490 

40 8 82 66 27 15 49 54 71 93 

65 67 23 47 53 68 45 34 63 51 516 

38 90 72 19 43 24 7 61 55 96 

50 33 47 60 43 59 56 28 45 47 468 

31 86 23 57 92 4 79 65 50 18 

39 42 39 41 35 52 27 40 22 44 381 

17 44 63 98 51 6 75 89 30 32 

48 36 32 38 41 43 47 56 34 46 421 

Table 60 

4844 

Degrees of 
freedom 

Sum of 
squares 

Mean square 

Between replications 
Between varieties 
Interaction, variety X 

replication 

2 

99 

198 

482 

52,039 

12,867 

241 

526 

65 

ing 0, but having a net negative or positive sum in each replication. These 

replication sums are +408, +99, —507, respectively. The analysis from 

the bulletin cited (Cox, Eckhardt, and Cochran 1940) was used; the analy¬ 

sis from Cochran and Cox (1957) is easier, though less detailed in explana¬ 

tions. 
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We square and sum all the deviations and divide the sum by 2 rk, where 

r is the number of replications (3) and k is the number of plots in a block. 

Hence 2 rk is 60. From the quotient is subtracted the sum of squares of the 

3 replication net sums of deviations divided by 2 rk2 or 600. This is ex¬ 

pressed as [(+176)2 + (+72)2 + ••• + (deviation block 30)2]/60 — 

[(Net sum deviations Replication l)2 + (D.R. 2)2 + (D.R. 3)2]/600 which 

comes out 4,583. That is our estimate of the part of the “interaction” sum 

of squares which is due to block variance. 

The analysis may now be restated: subtracting 4,583 from 12,867 to 

leave 8,284 in error, as in table 61. The degrees of freedom among 30 blocks 

are 27 instead of 29, because 2 belong to replications. Quite a reduction in 

error estimate has been made possible. 

Next we compute weighting coefficients for adjustment of variety means 

before testing significance of differences. If E is the error variance (48) 

and B is the block variance (170), W = 1/E or 0.02083; and W' = 2/ 

(3B — E) or 0.00433. The weighting factor (W.F.) is 2(W — W')/(2W + 

W) or 0.03300/0.04599 which comes out 0.71755. This is divided by 2 rk 

or 60, giving 0.01196. This in turn is multiplied by the 30 block deviations 

already calculated, for adjustment of varietal means; this is shown below. 

Lastly we compute two values for standard error of variety mean differ¬ 

ences. One is to test, differences between adjusted value of means of varieties 

occurring once in the same block. The other is for varieties not in the same 

block. This first is calculated as: 

6TF 
2W + W' 

where V is 48, the error variance. This comes out as 

X 10.72 

or a/34.30 or 5.86. The second is 

Table 61 

Degrees of 
freedom 

Sum of 
squares 

Mean square 

Between replications 2 482 241 
Between varieties (ignor¬ 

ing blocks) 
99 52,039 526 

Blocks (adjusted) 27 4,583 170 
Intra-block error 171 8,284 48 
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' 
OIF 

2 V/rk 4- /• 2 
2IF — IF' ^ 

which comes out V35.46 or 5.96. The 30 block deviations and their prod¬ 
ucts by the weighting factor are shown in table 62. 

For special tests of significance of differences, variety means should be 

adjusted by subtracting these weighted deviations for the block in which 
they fell. For instance, variety 1 occurred in Blocks 1, 19, and 21. The 

weighted deviations for these blocks are +2.10, —0.74, and —0.71, totaling 

+0.65. The average percentage for variety 1 is (68 + 75 + 72)/3, or 71.67, 
with the adjustment this becomes 71.67 — 0.65, or 71.02. Variety 65 oc¬ 

curred in Blocks 3, 17, and 29 with adjustments of +1.21, +1.02, and 

— 3.00, totaling —0.77. With this adjustment its mean of (61 + 61 + 

40)/3, or 54.00, becomes 54.00 — ( — 0.77) or 54.77. The adjusted difference 
between these two is 71.02 — 54.77, or 16.25. This is significant when 
compared to 5.96, the standard error of a difference between two varieties 

not found together in any block. The adjustment is usually small. 

The “F” test may be made with the simple analysis shown first, and if 

it is significant (as is true here), no other test is needed. If it is not signifi¬ 

cant, a further complex calculation described by Cox, Eckhardt, and 

Cochran (1940) may be made leading to a more accurate “F” test. In the 

present case, “F” of the simple test is 526/65, highly significant, and the 
more complex test gives an “F” not much higher. 

Following the methods of Cox, Eckhardt, and Cochran (1940) as to 

comparison of efficiency, this experiment is estimated as 20 percent more 

Table 62. Adjusted block deviations 

Block 
number 

Deviation 
Deviation 
X weight 
(0.01196) 

Block 
number 

Deviation 
Deviation 
X weight 
(0.01196) 

1 + 176 +2.10 16 -51 -0.61 
2 +72 +0.86 17 +85 + 1.02 
3 + 101 + 1.21 18 -86 -1.03 
4 +91 + 1.09 19 -62 -0.74 
5 + 107 + 1.28 20 0 0.00 
6 +5 +0.06 21 -59 -0.71 
7 -46 -0.55 22 -10 -0.12 
8 -70 -0.84 23 +58 +0.69 
9 -40 -0.48 24 + 129 + 1.54 

10 + 12 +0.14 25 +8 +0.10 
11 -21 -0.25 26 -56 -0.67 
12 +20 +0.24 27 +60 +0.72 
13 -17 -0.20 28 -80 -0.96 
14 + 139 + 1.66 29 -251 -3.00 
15 +92 + 1.10 30 -306 -3.66 
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efficient than a simple randomized block layout. This means that the 3 

replications were almost as good as 4 would have been with the simple 

plan. A nice gain is thus shown for a few hours paper work and some extra 

care in handling the test. 

31. A lattice square experiment 

In studying insecticidal control of boll weevils and aphids on cotton, 

it was desired to test 16 treatments. This is one of the numbers that can 

readily be arranged in a lattice square design. The experimenter desired to 

try it, though with so few treatments it is usually questionable whether a 

gain will be made by this plan. 

First it is necessary to arrange the treatment combinations. In this 

scheme the sets are made up with certain restrictions, as in the ordinary 

lattice and triple lattice. Added complexity is given by added restrictions 

on placing the treatments in plots in the field. With the lattices such as 

in the previous example, the replication areas and blocks within these areas 

must constitute definite contiguous plot groups, but with no restriction on 

their shape. In the lattice square, on the other hand, each replication area 

contains p2 plots physically arranged in a square of p rows and p columns. 

The design can be arranged for 16, 25, 49, 64, 81, or 121 treatments; that is, 

for p = 4, 5, 7, 8, 9, or 11; not for K = 6, 10, or 12. Where p is even, p + 1 

replications must be used; every one of the possible pairs of treatments will 

occur together twice, in some row and some column. Where p is odd, the 

design may be arranged with only (p -f l)/2 replications; each pair will 

occur once, in some row or some column. 

The design is planned by making up an orthogonal square of p2 units, 

making several groups of sets. For each replication, rows of plots are made 

up from one set, columns from another. After arranging these, randomiza¬ 

tion of rows and columns is carried out in placing in the field. These steps 

will be illustrated in the problem discussed. 

An orthogonal 4X4 square was written by taking 3 Latin squares from 

Fisher and Yates’ book of tables (1963). These squares are given in table 63. 

All were superimposed on one square. For the letters of the first, capitals 

were used; for those of the second, small letters; for those of the third, 

A', B', etc. The 16 positions were also numbered, corresponding to treat¬ 

ment numbers. The resulting square is shown in table 64. It will be noticed 

A B C D 
B A D C 
C D A B 
D C B A 

Table 63 

A B C D 
C D A B 
D C B A 
B A D C 

A B C D 
D C B A 
B A D C 
C D A B 
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Table 64 

1 A a A' 2 B b B' 3 C c C' 4 D d D' 
5 B c D' 6 A d C' 7 D a B' 8 C b A' 
9 C d B' 10 D c A' 11 A b D' 12 B a C' 

13 D b C' 14 C a D' 15 B d A' 16 A c B' 

Table 65 

1 2 3 4 1 6 11 16 1 8 10 15 
5 6 7 8 7 4 13 10 2 7 9 16 
9 10 11 12 12 15 2 5 3 6 12 13 

13 14 15 16 14 9 8 3 4 5 11 14 
1 5 9 13 1 7 12 14 
6 2 14 10 8 2 13 11 

11 15 3 7 10 16 3 5 
16 12 8 4 15 9 6 4 

that each set of letters constitutes a Latin square, with each letter occurring 

once and only once in each row and each column. It is also true that each 

small letter occurs once and only once with each capital letter, and with 

each letter of the A', B', C', D' set. Each set of letters has this arrange¬ 

ment with respect to the other sets. 

From this orthogonal square, the 16 treatment numbers can be arranged 

in 5 groups of sets. In each group there are 4 sets of 4. One group is made 
up from rows, one from columns, one from capital letters, one from small 

letters, one from A', B', etc. For example, with capital letters: A occurs 

with 1, 6, 11, 16; B with 2, 5, 12, 15, etc. These groups were made up as. 
in Chapter 3, and are written below. 

Rows: 1, 2, 3, 4; 5, 6, 7, 8; 9, 10, 11, 12; 13, 14, 15, 16. 

Columns: 1, 5, 9, 13; 2, 6, 10, 14; 3, 7, 11, 15; 4, 8, 12, 16. 

A’s, B’s, etc.: 1, 6, 11, 16; 2, 5, 12, 15; 3, 8, 9, 14; 4, 7, 10, 13. 

a’s, b’s, etc.: 1, 7, 12, 14; 2, 8, 11, 13; 3, 5, 10, 16; 4, 6, 9, 15. 

A', B', etc.: 1, 8, 10, 15; 2, 7, 9, 16; 3, 6, 12, 13; 4, 5, 11, 14. 
These sets fulfill the requirements for a lattice square; all possible pairs 
occur together and none twice. In the 5 replications, each set must occur 

twice, once as a row and once as a column. 
The first replication had rows from the first group of sets, columns from 

the second group. The second had rows from the third group, columns from 

the fourth. The other three replications took their rows and columns from 

the fifth and first groups, the second and third, the fourth and fifth re¬ 

spectively. The rows and columns were as noted in table 65. 
In setting these out in the field, rows and their columns were randomized 

in location. This gives a degree of randomness, yet keeps the sets together. 
With the first replication a random drawing gave the order 3, 1, 4, 2 to 

apply to rows. The rows were accordingly placed; on top the third, then 
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the first, fourth, and second in order (table 00). The columns were then 

randomized, the drawing giving the order 2, 4, 1, 3 (table 07). In this order, 

the plots were arranged in the first replication. The other replications were 

treated similarly. Through misunderstanding, the experimenter did not 

randomize all replications as completely as the first, but results will serve 
for illustration. 

Records were taken on boll weevil attack, aphid counts, and yield, but 

analysis will be stated only for aphid counts. The field diagram, with 

treatment numbers above and aphids per leaf during the most important 

period below, is as shown in table 08. Treatment totals are: 1, 184.0; 2, 
33.9; 3, 73.2; and so on. 

Row and column totals for each square (20 of each in all) must likewise 

be accumulated. 

Analysis was made as outlined by Yates (1940); it is described also by 

Cochran and Cox (1957). The principle is (as with the ordinary lattice) 

the adjustment of area values allowing for treatments in each area, followed 

by the adjustment of treatments for areas. The row and column totals 

were computed for each replication. Replication and treatment totals are 

secured. 

A table of parallel columns is arranged, with a line for each of the 16 

treatments. The first column is of treatment designations. The second 

is headed T and contains the total value for the given treatment. The third 

is R, and contains the total for the rows containing each treatment. For 

example, the row totals for rows containing treatment 1 had total values 

of 90.3, 87.2, 98.3, 119.3, 110.6; the 5 total 505.7. The fourth column is C 

and contains the total for columns associated with the given treatment. 

For treatment 1, this is 501.2. The fifth column, D0, is R — C; for No. 1, 

this is +4.5. The sixth column, L'0 , is (p X T) — [(R X (p + 1)] + 

(total of all plots). For treatment 1, this is (4 X 184.0) — (505.7 X 5) + 

1814.7, or 22.2. The next column, J0 , is L'0 + D0 , or +26.7. The next, 

K0, is J0 + (p — 1)D0 , or +40.2. The eighth, M0 , is K0 + D0 , or 44.7. 

The next, M'0 , should check M0 ; it is (p X T) — [(p + 1) X C] + (total 

of all plots), or for treatment 1, +44.7. The last column is left for adjusted 

treatment values, to be calculated later. 

The total sum of squares of deviation, the sum for replications, the sum 

for treatments ignoring rows and columns, and the remainder sum are 

calculated as in simpler designs. The sum of squares for rows, eliminating 

9 

Table 

10 
66 
11 12 10 

Table 

12 
67 

9 11 
1 2 3 4 2 4 1 3 

13 14 15 16 14 16 13 15 

5 6 7 8 6 8 5 7 
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Table 68 

10 
51.0 

12 
63.9 

9 
53.5 

11 
54.1 

5 
10.3 

12 
45.2 

15 
10.0 

2 
7.5 

2 4 1 3 10 7 4 13 
7.8 17.5 45.1 19.9 43.6 10.2 8.3 24.2 

14 16 13 15 16 1 6 11 
41.0 55.6 33.5 8.2 23.0 36.9 4.3 23.0 

6 8 5 7 3 14 9 8 
4.5 10.1 5.8 8.1 17.0 24.4 33.8 10.9 

10 15 8 1 16 12 8 4 3 16 5 10 
39.9 9.4 15.3 33.7 36.1 31.2 11.7 11.9 12.6 28.1 9.3 21.5 

9 16 7 2 11 15 3 7 6 9 4 15 
56.2 30.8 7.2 6.1 32.5 5.1 12.2 5.9 3.3 31.3 16.3 5.0 

12 13 6 3 1 5 9 13 12 7 14 1 
28.9 26.8 6.8 11.5 36.6 5.7 38.1 38.9 40.0 8.9 30.0 31.7 

11 14 5 4 6 2 14 10 13 2 11 8 
33.5 43.0 7.5 12.6 5.6 5.2 23.0 21.0 27.1 7.3 26.5 13.7 

treatments, is given by the sum of squares of the L'0 column, with divisor 

(p)3 X (p + 1). The M0 column in the same way gives the sum of squares 

for columns, eliminating treatments. The sum of squares of the JG column, 

with divisor (p)3 X (p — 1), gives the sum of squares for rows, eliminating 

varieties and columns. The K0 column in the same manner gives the sum 
for columns, eliminating both treatments and rows. 

The sum for rows eliminating columns and treatments, plus that for 
columns eliminating treatments only; or columns eliminating rows and 

treatments, plus that for rows eliminating treatments only; should be equal. 
Either one can be subtracted from the “remainder” sum previously calcu¬ 

lated, to give the sum of squares for error. 

The analysis so far is summarized in table 69. 

Adjustments for treatment totals are then developed. Weights used are 

u\ reciprocal of error mean square, 1/36.34 = 0.0275, and wr, which is 

(p — l)/[(p X adjusted row mean square) — (error mean square)] and 

comes out 0.0085. Another weight, wc, could be computed using column 

mean square, but this is nonsignificant and is regarded as nonexistent. 

The weight “lambda” (X) is (wi — wr)/[wr + wc + (p — 1 )wi\ or 0.209; 

X/p = 0.052. The adjustment for rows in any treatment is L'0 X X/p. 
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Table 69 

Degrees of 
freedom 

Sum of squares Mean square 

Total 79 19,229.09 — 

Replications 4 1,180.48 295.12 
Treatments (ignoring confounding) 15 15,188.37 1,012.56 
Remainder 60 2,860.24 — 

Columns, eliminating treatments (M0) 15 322.82 — 

Rows, eliminating C and T(J0) 15 1,447.14 96.48 
Rows, eliminating T(L'0) 15 1,381.86 — 

Columns, eliminating C and R(K0) 15 388.10 25.87 
Error 30 1,090.28 36.34 

For treatment 1 this is 0.052 X (+22.2) or about +1.2; the total is ac¬ 

cordingly adjusted from 184.0 to 185.2. The adjustment for treatment 2 

is negative. Some other treatments have larger adjustments; the largest is 

to No. 6, which rises from 24.5 to 45.9. This treatment occurred in rows of 

low infestation, and its rating is thus raised. 

A second adjustment, “mu” (ju), may be calculated for column tendencies 

using M0 , but here column variation is regarded as nonexistent. 

The standard error of a treatment total is estimated as 

V (1 + A + ju) X No. replications X error mean square, 

here 

V(1 + 0.209 + 0) X 5 X 36.34 or 14.8. 

Several other notes may be made. A simple randomized block analysis 

would give a standard error of a mean difference as 4.4. Squaring these 

two standard errors for comparison, we find the lattice square to be rated 

as about 110% as efficient as the randomized block would have been. Use 

of the square gave a gain, but not as much gain as another replication 

would have done with the simpler plan. The variation may be seen to be 

directional, rows showing differences and columns no particular difference. 

This seems to occur often with insect populations. The boll weevil infesta¬ 

tion showed smaller but significant treatment differences; both rows and 

columns varied, the rows more; the lattice square gave about 50% gain. 

If there are only (p + l)/2 replications in this design, which is possible 

if p is odd, analysis is a little simpler. Rows and columns can be adjusted 

only for treatments, not for each other. The adjustment is carried out much 

as with the ordinary lattice, and further procedure is outlined by 1 ates. 

The present method of analysis represents a definite gain in efficiency over 

the earlier method proposed by Yates. 
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82. Discriminant function and diagnostic characters 

The problem of diagnostic characters has been touched on in Chapter 1. 

Two groups of beetles which were similar but were believed to be distinct 
were studied. Four measurements were made on each; pro thorax width 

and length, elytron width and length. Often when a single measurement 

will not serve to discriminate, a combination of several can be found which 

will do so. Fisher (1954) outlines the calculation. 

In the present case this did not prove true. The individual measurements 
showed overlapping, and the “discriminant functions” calculated from 

several measurements also overlapped. It was noted that the measurements 
were correlated; that if pro thorax length was high or low in an individual 

beetle, elytron length was also high or low as a rule. This suggested the idea 

that the ratios of two measurements might be quite stable. These ratios 

were more promising than individual measurements. While no single ratio 

separated the groups, a combination was found by least square methods 

which did separate them. The procedure will serve to illustrate calculation 

of the discriminant function. 
The six possible ratios were calculated and tabled for 10 specimens of 

each group. The ratios were taken with the larger measurement in the 

numerator so that each ratio was greater than 1. For example, in group A, 

specimen No. 1, prothorax width (PW) was 11.50 units, prothorax length 
(PL) was 9.50. The ratio PW/PL was 11.50/9.50 or 1.21. EL denotes 

elytron length. 

Measurements selected as most promising of the 6 were PW/PL and 

EL/PW. They are shown in table 70. 

Table 70 

Group A Group B 

PW/PL (Xi): EL/PW (V2) PW/PL (Xi): EL/PW (Xt) 

1.21 2.04 1.24 2.08 
1.25 2.16 1.30 2.00 
1.21 2.13 1.25 2.02 
1.18 2.06 1.25 2.04 
1.18 2.17 1.26 2.00 
1.23 2.13 1.24 2.08 
1.22 2.21 1.27 2.02 
1.22 2.18 1.27 2.04 
1.19 2.21 1.25 2.13 
1.20 2.27 1.26 2.00 

Sum 12.09 21.56 12.59 20.41 
Mean 1.209 2.156 1.259 2.041 
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The sum of squares of deviations of PW/PL and EL/PW (termed AT 

and X2 respectively for convenience) is calculated for the series of 20 
without division as in simple correlation. The sum of products of deviations 

of Xi and AT is also calculated. The difference in the average X\ for group A 

and group B is also calculated; it is 1.209 — 1.259, or —0.050. This is called 

ch ■ The difference, in the same way, in A2, is 2.156 — 2.041, or +0.115 

(d2). Note that the difference must be taken the same way both times; we 

must say A — B or B — A and stick to it. Either “d” may be positive or 
negative. This time we have one of each. 

The equations are set up as for multiple regression (Chapter 1): 

S(x i2) + S (x\X 2) = di *S(x1x2) + S(x22) = do 

I11 this case >S+i2) is 

(1.21)2 + (1.25)2 + • • • + (1.26)2 - [(12.09 + 12.59)2/20] 

which is 0.0199. S(xix2) is 

(1.21 X 2.04) + • • • + (1.26 X 2.00) 

- [(12.09 + 12.59) X (21.56 + 20.4)]/20, 

or — 0.0322. S(x22) is 0.1267. The equations for the coefficients of Xi and 

X2 are: 

0.01996i - 0.032262 = -0.050 

-0.03226! + 0.126762 - +0.115. 

Solving, 61 comes out as —1.775; 62 as +0.456. 

Next the coefficients are used on the ratios Xi and X2 to calculate the 

discriminant function for each beetle. For the first, the function is 

(-1.779 X 1.21, or -2.15) + (+0.456 X 2.04, or+0.93), which is -1.22. 

The others are calculated in order, with the results for the 10 specimens of 

each group as in table 71. If di and d2 had been taken as B — A instead of 

A — B, we would have had positive functions with a little clearer picture. 

However, it is easy to see that all of group B have values of —1.25 or larger 

negatives, while all of group A have —1.24 or smaller negative values. The 

discrimination is clear-cut, while either ratio alone showed overlapping. 

This process may easily be extended to three or more measurements or 

ratios, in the manner typical of multiple regression calculations. 

33. Multiple means 

In data closely similar to some studied by the author there are 5 treat¬ 

ments in 4 replications with 12 degrees of freedom for error (randomized 
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Table 71 
Group A 

-1.22 

-1.24 

-1.18 

-1.16 

-1.11 
-1.21 

-1.16 

-1.17 

-1.10 
-1.09 

Group B 

-1.25 

-1.40 

-1.30 

-1.29 

-1.33 
-1.25 

-1.33 
-1.32 

-1.25 

-1.33 

blocks). The error variance is 10.24, the standard error of a treatment mean 

(s£) is Vl0.24/4 or 1.60. The standard error of a mean difference is V2 X 

1.6 or 2.26. Since the “t” for 5% with 12 d.f. is 2.18, the “least significant 

difference” is 2.18 X 2.26 or 4.93. (This result might also be secured by 

taking 3.08 X Si .) 
The treatment yield means are ranked in order as follows: 

A 28.4a C 26.1ab check 21.7b 

B 28.3a D 24.1ab 

Using the “least significant difference,” it is apparent that A and B differ 

from the check, but not from C and D; also, C and D do not differ from the 
check. 

The situation mentioned in Chapter 1, that a difference may appear 

significant when it is not, because of the number of differences involved, 

must be considered here. Snedecor (1956, Chapter 1, sec. 10.6) gives Tukey’s 

method for dealing with it. From his table, the multiplier for s2 , with 5 

means and 12 d.f. for error, is 4.51 instead of 3.08. This gives us a “D” 

of (4.51 X 1.6) or 7.2, which is an adequate safeguard against false recogni¬ 

tion of differences. In this case it shows no difference to be significant. 

A more lenient method is given by Duncan (1955). The multiplier is 

varied with the number of steps apart in the range of means. For 2, 3, 

4, and 5 means the multipliers (for 12 d.f.) are 3.08, 3.23, 3.33, 3.36 respec¬ 

tively. Note that the 3.08 is the same as in the simple “least significant 

difference.” For A vs. check, the significant difference is 3.36 X 1.6 or 5.4; 
the two differ significantly by this standard. For B vs. check, we use 3.33 X 

1.6; and so on. The verdict here is that A and B both differ from the check, 

as in the simple least significant difference. 
The means are then given superscripts; two means having the same letter 

are not significantly different. These methods serve to pick out significant 
differences where the F-test has shown general significance. In no case 
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should a significant difference between two means be claimed, where F 
has not shown significance. 
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